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Jets exist across a huge range of physical scales
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Jets are observed across the EM spectrum
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Ingredients for a jet
✤ Rotation

✤ Open magnetic field lines

Open question #1: Are the jet ingredients provided by the 
central object or a surrounding accretion disk? 



Ingredients for a jet
✤ Rotation

✤ Magnetic fields
✤ Play multiple roles:

✤ Launching jets

Reference: Blandford & Znajek 1977; Blandford & Payne 1982  
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Hydromagnetic flows from accretion discs 895 

Figure 3. Flow streamlines projected into the poloidal plane for the ‘standard’ solution k =0.03, \ = 30. 
The dashed line illustrates the self-similar scaling, each field line intersects the dashed line with the same 
angle, and corresponds to the location of the m = 1 surface. Due to the self-similarity, the figure will be 
unchanged if the r and z axes are scaled by the same factor. For this case, ^ =0.03, corresponding to a 
jet opening angle of 0 = 6°. Also plotted is the pitch angle a = tan-1 lÆ^/Æp I of the magnetic field, illustrat- 
ing the way in which the inertia of the matter causes the field to become increasingly toroidal. 

Figure 4. The Alfvén Mach number m1/2, the fast magnetosonic Mach number nin, the poloidal velocity 
U1/2f, the toroidal velocity g, and the ratio of the toroidal field strength to the poloidal field strength 
along a single streamline. 
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Ingredients for a jet
✤ Rotation
✤ Accretion disk
✤ Magnetic fields

✤ Play multiple roles:
✤ Launching jets
✤ Driving accretion

Reference: Livio 1999; Wardle 2007; Tocknell et al. 2014  

Magnetic field strength required if the field is entirely responsible for
angular momentum transport.  
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A bit about accretion
✤ Gravitational binding energy released by accretion

✤ In the extreme case, this is comparable to the binding energy 
of the envelope.
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A bit about accretion
✤ Gravitational binding energy released by accretion

✤ This energy can be partitioned between radiation, winds, 
and jets M. Giustini and D. Proga: A global view of accretion and ejection around SMBHs

Table 1. Summary of the main properties of the five ṁ regimes sketched in Fig. 1 and described in Sects. 2.2–2.6.

ṁ range Accretion/ejection flow Feedback Examples
(1) (2) (3) (4)

Very low ṁ ⇡ 10�8 Non-radiative hot accretion flow Lkin Quiescent/inactive,
(⌧ 10�6) relativistic polar jet Sgr A*

Low ṁ ⇡ 10�4 Outer cold disk at ⇠1000 s Rg, inner hot flow Lkin � Lrad LLAGN
(10�6 . ṁ . 10�3) relativistic polar jet M 81*, M 87

Moderate ṁ ⇡ 10�2 Outer cold disk at ⇠10 s Rg, extended hot corona Lkin ⌧ Lrad Seyfert/mini-BAL QSO
(10�3 . ṁ . 10�1) weak/moderate LD wind depending on small/large MBH NGC 5548/PG 1126�041

High ṁ & 0.25 Cold accretion disk down to ISCO, compact hot corona Lkin < Lrad NLS1/BAL QSO
(0.1 . ṁ . 1) moderate/strong LD wind depending on small/large MBH I Zw 1/PDS 456

Very high ṁ � 1 Outer thin disk, inner slim disk, very compact hot corona Lkin . Lrad Super-Eddington
(1 . ṁ . 100) strong outflows, both polar and equatorial RX J0439.6�531

Notes. (1) Nomenclature for the Eddington ratio ranges used in this work, with an indicative order of magnitude, and an indicative range of values
in parentheses. (2) Accretion and ejection flow main physical characteristics. (3) Type of energy feedback between the AGN and the environment:
kin= kinetic, rad= radiative. (4) Classes of objects or individual examples of well-studied local AGN.

configuration from a thin disk to a thicker one; the covering fac-
tor of the sub-relativistic winds will be maximum, and also polar
outflows will be present (e.g., Sa̧dowski & Narayan 2016).

We assume that the higher ṁ, the larger the radial extent
of the outer cold and optically thick accretion flow. In other
words, the cold flow moves further in toward the central SMBH,
whereas the inner accretion flow that is hot and optically thin
has its size and temperature decreasing with increasing ṁ. This
is similar to the models of Falcke et al. (2004) for LLAGN, and
of Esin et al. (1997) and Done et al. (2007) for stellar mass black
hole binaries, and to the model by Różańska & Czerny (2000)
for accreting BHs in general. As for the outflow, we assume that
with increasing ṁ, it becomes less and less dominated by the
polar relativistic jets and more and more by the sub-relativistic
accretion disk winds, and that these winds increase their geomet-
rical covering factor with increasing ṁ.

The main properties of the structure of the inner accre-
tion/ejection flow for the five di↵erent ṁ regimes are summa-
rized in Table 1 along with examples of known AGN for each
regime. In Fig. 1, we present a sketch of the side view of the inner
parsec AGN structure for the five di↵erent ṁ regimes. Figure 2
presents a sketch of the intrinsic SED corresponding to each
ṁ/MBH regime. To illustrate the e↵ects of the di↵erent accretion
disk temperature on the structure of the radiation driven winds
for di↵erent BH masses, for the luminous AGN in the moderate
and high ṁ regime we present the two cases: MBH ⌧ 108

M�
and MBH & 108

M�.
In Sect. 2.1 we discuss the e↵ects of varying black hole

mass in luminous AGN, while in the following subsections, we
describe the main physical and observational properties of the
five di↵erent ṁ regimes: very low ṁ ⌧ 10�6 in Sect. 2.2; low
10�6 . ṁ . 10�3 in Sect. 2.3; moderate ṁ & 10�2 in Sect. 2.4;
high ṁ & 0.25 in Sect. 2.5; and very high ṁ � 1 in Sect. 2.6.

2.1. Effect of black hole mass

At the lowest ṁ, matter is fully ionized, and the accre-
tion/ejection flow properties are independent of the BH mass, as
the plasma physics governing the corresponding flows is scale
invariant. Scaling of the accretion and ejection flow physical
properties across the mass range is broken once the density

increases enough to allow for cooling to become e�cient, and
the atomic absorption opacities of the accreted/ejected matter
to become important. In particular, in the Shakura & Sunyaev
(1973) solution for ṁ & 0.01, where the accretion flow is a geo-
metrically thin, optically thick accretion disk, the temperature
scales as T

4 /
⇣
ṁ/M2

BH

⌘ ⇣
Rin/Rg

⌘�3
. For a large MBH & 108

M�,
the peak disk temperature will be around the optical/UV; while
for small MBH ⌧ 108

M�, it will move toward the far UV/soft
X-ray regime.

The relative UV/X-ray photon flux and matter opacities of
the inner accretion flow are critical to the launching and accel-
eration of line-driven accretion disk winds (LD disk winds). LD
acts as a booster of the radiation pressure when most of the gas
opacity is in spectral lines, and it is therefore strongly dependent
on the matter ionisation state (Castor et al. 1975; Murray et al.
1995; Proga et al. 2000; Dannen et al. 2019). A UV flux that
is too low will not be able to exert enough pressure to launch a
LD wind, and a X-ray flux this is too large will ionize the matter
above a level where LD is no longer e↵ective (“overionizing” it).
Therefore at a given ṁ, a large MBH will favor the development
of a powerful (dense, fast, persistent) LD disk wind over a larger
range of radial disk scales, while a small MBH will have a disk
where the circumnuclear gas over a large range of radial scales
will get overionized and will therefore be a failed LD disk wind
(Proga & Kallman 2002; Proga 2005; PK04).

Following Proga et al. (2002), we plot in the top panel
of Fig. 3 the UV Eddington ratio LUV/LEdd as a function of
the bolometric Eddington ratio L/LEdd, for nine di↵erent black
hole masses, from 102

M� to 1010
M�. To calculate LUV, a pure

Shakura & Sunyaev (1973) accretion disk was assumed, and its
radial temperature profile was calculated where the disk tem-
perature 12 000 K  T  50 000 K (or 12 000 K  T  Tmax
if Tmax < 50 000 K). The UV photons are the main ones capa-
ble of driving a LD wind, while higher energy photons coming
from hotter regions of the accretion disk are the ones capable of
making the wind fail, by overionizing the UV-absorbing atoms.
Focusing on the MBH = 108

M� case, which is marked by the
dashed line in Fig. 3, one can see the e↵ect of increasing disk
temperature with increasing ṁ: at 1% of the Eddington limit
almost all the luminosity is emitted in UV (�UV . �); at � ⇠ 0.1,

A94, page 3 of 14
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A bit about accretion
✤ Gravitational binding energy released by accretion

✤ This energy can be partitioned between radiation, winds, 
and jets

Reference: Tchekhovskoy, Narayan & McKinney 2011  

Jets from magnetically arrested BH accretion L81

In any case, we track the amount of mass and internal energy added
in each cell during the course of the simulation and we eliminate
this contribution when calculating mass and energy fluxes.

Model A0.99f (Table 1) uses a resolution of 288 × 128 × 64
along r-, θ -, and ϕ-, respectively, and a full azimuthal wedge, #ϕ =
2π . This set-up results in a cell aspect ratio in the equatorial region,
δr : rδθ : rδϕ ≈ 2 : 1 : 7. To check convergence with numerical
resolution, at t = 14 674rg/c, well after the model reached steady
state, we dynamically increased the number of cells in the azimuthal
direction by a factor of 2. We refer to this higher resolution simu-
lation as model A0.99fh and to A0.99f and A0.99fh combined as
model A0.99fc. We also ran model A0.99 with a smaller azimuthal
wedge, #ϕ = π . We find that the time-averaged jet efficiencies of
the four A0.99xx models agree to within statistical measurement
uncertainty (Table 1), indicating that our results are converged with
respect to azimuthal resolution and wedge size.

Our fiducial model A0.99fc starts with a rapidly spinning BH
(a = 0.99) at the centre of an equilibrium hydrodynamic torus
(Chakrabarti 1985; De Villiers & Hawley 2003). The inner edge
of the torus is at rin = 15rg and the pressure maximum is at
rmax = 34rg (see Fig. 1a). At r = rmax the initial torus has an aspect
ratio h/r ≈ 0.2 and fluid frame density ρ = 1 (in arbitrary units).
The torus is seeded with a weak large-scale poloidal magnetic field

(plasma β ≡ pgas/pmag ≥ 100). This configuration is unstable to the
magnetorotational instability (MRI, Balbus & Hawley 1991) which
drives MHD turbulence and causes gas to accrete. The torus serves
as a reservoir of mass and magnetic field for the accretion flow.

Equation (1) shows that the BZ power is directly proportional to
the square of the magnetic flux at the BH horizon, which is deter-
mined by the large-scale poloidal magnetic flux supplied to the BH
by the accretion flow. The latter depends on the initial field con-
figuration in the torus. Usually, the initial field is chosen to follow
isodensity contours of the torus, e.g. the magnetic flux function is
taken as (1(r, θ ) = C1ρ

2(r, θ ), where the constant factor C1 is
tuned to achieve the desired minimum value of β in the torus, e.g.
min β = 100. The resulting poloidal magnetic field loop is centred at
r = rmax and contains a relatively small amount of magnetic flux. If
we wish to have an efficient jet, we need a torus with more magnetic
flux, so that some of the flux remains outside the BH and leads to a
MAD state of accretion (Igumenshchev et al. 2003; Narayan et al.
2003). We achieve this in several steps. We consider a magnetic flux
function, ((r, θ ) = r5ρ2(r, θ ), and normalize the magnitude of the
magnetic field at each point independently such that we have β =
constant everywhere in the torus. Using this field, we take the initial
magnetic flux function as (2(r, θ ) = C2

∫ θ ′=θ

θ ′=0

∫ ϕ′=2π

ϕ′=0 BrdAθ ′ϕ′ and
tune C2 such that min β = 100. This gives a poloidal field loop

Figure 1. Shows results from the fiducial GRMHD simulation A0.99fc for a BH with spin parameter a = 0.99; see Supporting Information for the movie. The
accreting gas in this simulation settles down to a magnetically arrested state of accretion. (Panels a–d): the top and bottom rows show, respectively, equatorial
(z = 0) and meridional (y = 0) snapshots of the flow, at the indicated times. Colour represents the logarithm of the fluid-frame rest-mass density, log10ρc2

(red shows high and blue low values; see colour bar), filled black circle shows BH horizon, and black lines show field lines in the image plane. (Panel e): time
evolution of the rest-mass accretion rate, Ṁc2. The fluctuations are due to turbulent accretion and are normal. The long-term trends, which we show with a
Gaussian smoothed (with width τ = 1500rg/c) accretion rate, 〈Ṁ〉τ c2, are small (black dashed line). (Panel f): time evolution of the large-scale magnetic flux,
φBH, threading the BH horizon, normalized by 〈Ṁ〉τ . The magnetic flux continues to grow until t ≈ 6000rg/c. Beyond this time, the flux saturates and the
accretion is magnetically arrested. (Panels (c) and (d) are during this period). The large amplitude fluctuations are caused by quasi-periodic accumulation and
escape of field line bundles in the vicinity of the BH. (Panel g): time evolution of the energy outflow efficiency η (defined in equation (5) and here normalized
to 〈Ṁ〉τ c2). Note the large fluctuations in η, which are well correlated with corresponding fluctuations in φBH. Dashed lines in panels (f) and (g) indicate time
averaged values, 〈φ2

BH〉1/2 and 〈η〉, respectively. The average η is clearly greater than 100 per cent, indicating that there is a net energy flow out of the BH.

C© 2011 The Authors, MNRAS 418, L79–L83
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

More energy coming out 
in jets than radiation!
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Roles of jets
✤ Extract/transport mass

·Mjet ∼ ·MEdd ∼ 10−3 ( R2
R⊙ ) M⊙ yr−1

Reference: Tocknell et al. 2014  
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Roles of jets
✤ Extract/transport mass

✤ Extract/transport energy
·Ejet ≳ 1037 erg s−1

Reference: Fragile et al. 2012

?·Mjet ∼ ·MEdd ∼ 10−3 ( R2
R⊙ ) M⊙ yr−1



Roles of jets
✤ Extract/transport mass

✤ Extract/transport energy
·Ejet ≳ 1037 erg s−1

Reference: Fragile et al. 2012

530 P. C. Fragile, J. Wilson and M. Rodriguez

Figure 7. Plot of the density-weighted shell average of the jet Lorentz factor
γ (top), the fraction of jet flux carried in the electromagnetic component
ĖEM/(ĖEM + ĖFL) (middle) and the fraction of jet flux carried in the fluid
component ĖFL/(ĖEM + ĖFL) (bottom).

and kinetic energy fluxes and a Lorentz factor of ≈7, consistent
with previous numerical studies (De Villiers et al. 2005; Hawley &
Krolik 2006; McKinney 2006). Most importantly, we again see that
there is very little difference in the behaviour of the jets; certainly
the variation is much smaller than the factor of ≈4 difference in
scale height.

4 C O L D C O RO NA

Our two main arguments for why thicker discs might lead to more
powerful observed jets were that thicker discs would presumably
lead to more mass loading and would also better confine their jets.
However, the results in the previous section demonstrate two critical
flaws in this argument: (1) confinement appears to be provided by
the corona, not the disc, and (2) the bulk of the acceleration happens
after the confinement ends. Nevertheless, this apparent contradic-
tion of our original hypothesis may point us in a more promising
direction: if it is the corona that provides the confinement, then
perhaps the critical aspect of the hard-to-soft transition that could
explain the fading of the jet is the disappearance of the corona.
X-ray spectral observations already strongly suggest that while the
hard-state emission is dominated by a corona, the soft-state spec-
trum shows little or no evidence for this component (McClintock &
Remillard 2006). If the corona indeed disappears in the soft state,
then the only question that remains is whether this also explains the
fading of the jet.

Interestingly, the corona has never been observed to disappear
in any GRMHD simulations that we are aware of, although there
is some evidence for it being weaker in simulations that have no
net poloidal flux (see fig. 6 of Beckwith et al. 2008). In nature its
disappearance may be related to some sort of thermal instability
or change in ionization level, neither of which can be captured
using the rudimentary treatments of gas thermodynamics currently
implemented in global GRMHD disc simulations. Nevertheless, we
tried to create a smaller corona by conducting a few simulations that
used the original Noble et al. (2009) cooling function, such that the
non-disc gas cooled to a much greater extent than in the simulations
presented here. Even so, we still found no significant differences

between the coronae of these alternative simulations and the ones
shown in Fig. 6. This, perhaps, should not be surprising since these
coronae are generated by magnetocentrifugal, not thermal, forces.
If the coronae in nature are similarly driven, then it may yet be that
a change in magnetic field topology is required to explain both the
disappearance of the jet and the corona.

5 C O N C L U S I O N S

The fundamental conclusion of this work is that there is no cor-
relation between the disc scale height and jet power in GRMHD
simulations. Varying the disc scale height by almost a factor of 4
(0.04 ! H/r ! 0.16) produces no meaningful differences in the
measured jet efficiencies nor bulk Lorentz factors.

Our main reason for suspecting that the disc scale height might
affect jet power was that we presumed that the disc played an
important role in providing confinement. Based on our simulations,
it appears that this is not the case; rather, it is the corona that
provides the confinement. This finding contradicts the conjecture
put forth in Beckwith, Hawley & Krolik (2009) that it is the disc
pressure that sets the level of (magnetic) pressure in the funnel.
Interestingly, we also find that the corona is not sensitive to the
level of cooling applied in our simulations, and so, its properties do
not vary appreciably from one simulation to the next.

In Section 1, we suggested that jets ought to be present in all
accretion states, since the necessary ingredients (rotation plus open
magnetic field lines) seem likely to be present in all states. We
would then attribute the differing jet observations in each state to
the degree of confinement provided. In light of our results, we must
modify this picture to either suggest that the different jet behaviour
between the hard and soft states must be due to a collapse of the
corona or a change of field topology (scenarios that could not be
explored using the methods of this paper).

As always, there is a concern as to whether or not our simulations
have run long enough to reach meaningful equilibrium states. This
is especially pertinent for our 2D simulations, as these can never
truly reach a steady state. The reason is that, after a period of initial
vigorous growth, the MRI in 2D simulations steadily decays because
the dynamo action that normally sustains it requires access to non-
axisymmetric modes that are obviously inaccessible. There are other
pathologies related to the forced axisymmetry of 2D simulations,
which may explain, for instance, the gaps that are observed in some
of our discs in Fig. 1.

Another issue is that our simulations, like many previous ones
(e.g. De Villiers et al. 2005; Hawley & Krolik 2006; McKinney
& Blandford 2009), supply only a limited amount of magnetic
flux to the black hole. This restricts the range of jet efficiencies
that we can hope to observe. If, on the other hand, a very large
amount of magnetic flux is available to the black hole, the black hole
flux can saturate, with magnetic pressure regulating the accretion
process, as demonstrated recently by Igumenshchev, Narayan &
Abramowicz (2003), Igumenshchev (2008), Tchekhovskoy et al.
(2011) and McKinney et al. (2012). In this ‘magnetically choked’
state, the jet power does depend on the disc scale height, as the
thickness of the disc plays a role in regulating how much flux
reaches the black hole (Tchekhovskoy & McKinney 2012). Since
our simulations only supply a limited amount of flux, we are not
able to observe this effect.

The disc scale height may also play a role in regulating jet power
by setting how much of the black hole horizon participates in the
BZ mechanism; only that portion where b2/ρ > 1 can power the
jet. In this case, it would only be the scale height very close to

C© 2012 The Authors, MNRAS 424, 524–531
Monthly Notices of the Royal Astronomical Society C© 2012 RAS
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Roles of jets
✤ Extract/transport mass

✤ Extract/transport energy

✤ Extract/transport angular momentum?

·Ejet ≳ 1037 erg s−1

·J = 1
2

·MaccR2
diskΩ

Open question #2: How much of a disk’s angular 
momentum is carried away by the jet? 

Reference: Tocknell et al. 2014  
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Jets vs. winds
✤ Outflows can come in 

✤ narrow, high velocity components (jets)
✤ wider, slower components (winds)

Reference: Vourellis et al. 2019  

seem discontinuous, and we can clearly distinguish 2–3 knots
of high velocity in larger radii (r>50), while closer to the
black hole the high values of Lorentz factor seem to have a
more continuous distribution (see Figure 12).
We select four radii, r≈4, 12, 52, and 75, where high-

velocity knots appear. In Figure 13 we see how the radial
velocity, the mass flux, and the electromagnetic energy flux
(Poynting flux) per solid angle are distributed along the polar
angle in these radii. In general, the Poynting flux distribution
follows the high-velocity areas, proving that the jet funnel has a
strong electromagnetic component. The mass flux in the funnel
area does not show a significant increase in comparison with
the disk wind area and the disk, where the mass density is

Figure 8. Snapshots of our reference simulation. Shown is the density distribution (log scale) at times t=8000, 8500, and 9000. The poloidal magnetic field lines are
shown (white lines). At late times the accretion disk disconnects from the black hole, which results in halting of mass accretion and ejection of the BZ jet.

Figure 9. Integrated mass flux through the outer disk at r=100 (blue),
through the inner disk radius at r=3 (red), and through the disk surfaces
(green).

Figure 10. Comparison of the disk mass loss as calculated directly from the
disk mass evolution (red) and from the outflow mass flux (blue). Both curves
coincide, demonstrating the robustness of our integration tools.

Figure 11. Vertical component of the velocity and the Lorentz factor on a
subgrid of 200Rg.
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Jets vs. winds
✤  dominated by wind
✤  dominated by wind
✤  dominated by ???

·M·J·E

Reference: Vourellis et al. 2019  

4.5. The Accretion Disk Wind

The origin of accretion disk winds has been studied in the
context of both AGNs and YSOs. Numerous works have
investigated the launching mechanisms, especially in the
nonrelativistic regime (Casse & Keppens 2002; Zanni et al.
2007; Sheikhnezami et al. 2012; Stepanovs & Fendt 2014). It
has become clear since the seminal work of Ferreira (1997) that
the magnetic resistivity is a key parameter for the investigation
of the disk wind since it allows the gas to penetrate the
magnetic field lines and thus allows for both (i) advection
toward the black hole and (ii) mass loading the disk wind.

In a strong disk magnetic field, magnetocentrifugally
accelerated outflows can be driven once the material is lifted

from the disk plane into the launching surface, usually located
around the magnetosonic surface. Qian et al. (2017, 2018) have
extended the study of disk winds to the general relativistic
regime. However, they have found that—in contrary to
nonrelativistic disks—it is mainly the pressure gradient of the
toroidal magnetic field that launches the disk winds, while the
energy output by the disk wind can indeed be comparable to
the BZ outflow launched by the BH. In addition (or rather as a
consequence), disk winds from relativistic disks are quite
turbulent and do not evolve in the smooth outflow structures
that are known from nonrelativistic cases. In this section we
continue the analysis of the disk outflows, extending their study
to (physically) larger grids of higher resolution.

4.5.1. General Overview

In Figures 15 and 16 we present the velocity structure, the
Alfvén Mach number, and the plasma-β for different areas of
the disk wind. In order to emphasize the dynamic range of the
disk wind, we restrict the velocity plots to vp<0.1c.
The plots of radial velocity (Figure 15, left, and Figure 16,

top) nicely demonstrate the wind launching surface where the
radial velocity changes sign, thus indicating the transition from
accretion to ejection. The total poloidal velocity vectors start
from inside the disk, where accretion dominates, and then
continue across zero-velocity surface into the disk wind. The
radial disk wind velocity increases as the wind leaves the disk
surface, reaching up to =u c0.1r and following the magnetic
field lines. Our vectors clearly demonstrate the connection
between disk accretion and wind ejection.
In Figure 16 we show the poloidal Alfvén Mach number

MA,p. The Alfvén surface is located slightly above the disk
surface (which we defined by u r=0), implying that the fluid
leaves the disk surface with sub-Alfvénic speed, <M 1A,p .

Figure 13. Comparison of the angular distribution of mass flux (red), Poynting flux per solid angle (green), and Lorentz factor (blue) for the reference simulation at
t=4000 at four radii, r=4, 12, 52, and 75. Negative mass flux indicates accretion toward the black hole. The BZ-driven jet funnel is clearly distinguished by the
peaks in Lorentz factor and electromagnetic energy flux. For increasing radii, the mass flux increases, demonstrating the matter-dominated disk wind. In low radii,
between the rotational axis and the jet funnel, the floor density material falls toward the black hole.

Figure 14. Evolution of the total Poynting flux for our reference simulation at
radius r=100. We split our domain into three regions. The first is between
0°<θ<25°, expressing the Poynting flux from the relativistic jet funnel
(red). The second is between 25°<θ<65°, which includes the Bf-dominated
disk wind (green). The third is between 65°<θ<80°, which includes the BP-
dominated disk wind (blue).
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seem discontinuous, and we can clearly distinguish 2–3 knots
of high velocity in larger radii (r>50), while closer to the
black hole the high values of Lorentz factor seem to have a
more continuous distribution (see Figure 12).
We select four radii, r≈4, 12, 52, and 75, where high-

velocity knots appear. In Figure 13 we see how the radial
velocity, the mass flux, and the electromagnetic energy flux
(Poynting flux) per solid angle are distributed along the polar
angle in these radii. In general, the Poynting flux distribution
follows the high-velocity areas, proving that the jet funnel has a
strong electromagnetic component. The mass flux in the funnel
area does not show a significant increase in comparison with
the disk wind area and the disk, where the mass density is

Figure 8. Snapshots of our reference simulation. Shown is the density distribution (log scale) at times t=8000, 8500, and 9000. The poloidal magnetic field lines are
shown (white lines). At late times the accretion disk disconnects from the black hole, which results in halting of mass accretion and ejection of the BZ jet.

Figure 9. Integrated mass flux through the outer disk at r=100 (blue),
through the inner disk radius at r=3 (red), and through the disk surfaces
(green).

Figure 10. Comparison of the disk mass loss as calculated directly from the
disk mass evolution (red) and from the outflow mass flux (blue). Both curves
coincide, demonstrating the robustness of our integration tools.

Figure 11. Vertical component of the velocity and the Lorentz factor on a
subgrid of 200Rg.
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Jets vs. winds

Reference: Lee et al. 2018; Lee et al. 2021

HH 212

performed due to insufficient signal-to-noise ratio of the
continuum data in the long baselines. A robust factor of 0.5
was used for the visibility weighting to generate SO and SiO
channel maps with a synthesized beam of 0 036× 0 030 at a
position angle of ∼−78° and a noise level of ∼0.75
mJy beam−1 (7.0 K). We also included the SO visibility data
obtained in Cycle 3 (Lee et al. 2018b) and reduced the noise
level slightly down to 0.67 mJy beam−1 (6.2 K) in the SO
channel maps. The velocities in the channel maps are local
standard of rest (LSR) velocities.

3. Results

Figure 1 shows the SO map in comparison to the SiO map of
the jet and the continuum map of the dusty disk (adopted from
Lee et al. 2019) within 1400 au of the central protostar at 13 au

resolution. SiO shows an episodic jet launched from the
innermost disk, appearing first as a highly collimated chain of
knots in inner 200 au and then a chain of broader bow shocks
downstream at larger distances. SO also shows a jet aligned
with the SiO jet.
We can unveil the wide-angle outflow by separating the SO

emission into two velocity components. At high velocity (more
than±3 km s−1 away from the systemic velocity of ∼1.7 km
s−1, Figure 1(c)), SO traces a collimated jet aligned with the
SiO jet, but wider possibly because the SO line has a lower
critical density than SiO and thus can trace less dense material.
The critical densities (in H2) are 7.2× 106 cm−3 for SO and
1.2× 107 cm−3 for SiO (Schöier et al. 2005). At low velocity
(within±3 km s−1 of the systemic velocity, Figure 1(d)), thin
outflow shells (marked with white brackets) are detected in SO
surrounding the jet. Only their bases were detected before (Lee

Figure 1. SiO and SO intensity maps toward the HH 212 system within 1400 au of the protostar, together with the 350 GHz continuum map of the disk (gray image
adopted from Lee et al. 2019). The maps are all rotated by 22°. 5 clockwise to align the jet axis in the north–south direction. SO-HV indicates the SO map at high
velocity more than ±3 km s−1 away from the systemic velocity. SO-LV indicates the SO map at low velocity within ±3 km s−1 of the systemic velocity. Color codes
are the same as the labels. White brackets mark the shells.

2
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et al. 2018b). They are now detected further away and seen to
smoothly connect to the SiO/SO bow shocks downstream at
larger distances (∼600 au; Figure 1(e)). Faint extended SO
emission is also detected surrounding the base of the shells,
within z 150 au from the disk. This emission shows up better
in an intensity-weighted velocity map (Figure 2), forming a
wide-angle rotating outflow together with the base of the shells,
appearing as a thick X-shape fanning out from the disk, rotating
around the jet. Away from the base, the shells are mainly
blueshifted in the north and redshifted in the south, similar to
the velocity sense of the bow shocks at larger distance and thus
driven by them. The inner part of the wide-angle outflow
coincides with the base of the shells and is thus perturbed by
the bow shocks. The wide-angle outflow has an outer boundary
outlined by the inner infalling-rotating envelope traced by the
high-velocity emission of HCO+ (Figure 2(b)), confirming that
it originates from the disk. Its outer part is unperturbed by the
bow shocks, providing the best opportunity to check the
previously proposed MHD DW interpretation (Tabone et al.
2017, 2020).

4. MHD DW Model

Various MHD models are being developed to launch DWs
and carry away part or all of the angular momentum from
accretion disks (Turner et al. 2014; Bai 2017; Zhu &
Stone 2018; Riols et al. 2020). The first and most simple 2D
version of these models is a steady-state, axisymmetric, self-
similar wind launched from a geometrically thin Keplerian disk
(Blandford & Payne 1982; Ferreira 1997). These models are
well suited for comparison with observations because they
allow for parameter studies. As discussed in Tabone et al.
(2020), the observable structure and kinematics of the wind in
these models are mainly determined by three parameters: (1)
protostellar mass M* defining the Keplerian rotation

=v GM rk,0 0* at a radius r0 in the disk; (2) magnetic level
arm parameter ( )l r rA 0

2, where rA is the Alfvén radius
along the streamline launched from a footpoint at r0,
determining the poloidal acceleration and the extracted specific
angular momentum (in particular, the terminal wind velocity
and the final specific angular momentum achieved along each
streamline are l~ -v v 2 3w k,0 and l∼ λ l0, respectively,
where l0= r0 vk,0 is the value at the footpoint at r0); and (3)
widening factor ºW r rmax 0, where rmax is the maximum

Figure 2. Intensity-weighted velocity maps of SO in the inner region at low velocity. The gray X-shaped curve in (a) outlines the wide-angle rotating outflow detected
in SO. Panel (b) zooms into the central region. Black contours show the same disk map as in Figure 1. Red and blue contours show the high-velocity (HV) HCO+

emission adopted from Lee et al. (2017c), outlining the boundary of the innermost envelope. Gray curves plot the streamlines of the disk wind in Model L5W30, with
footpoints at r0 = 4, 8, 16, and 40 au. Dashed curves show the streamlines with footpoints at r0 = 0.2, 1, 2 au.
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Jets vs. winds
✤ For those simulating “jets” in CEE

✤ The jets and winds are likely originating at scales below 
what you can resolve -> subgrid models

✤ What you know ✤ What you need to know

·Eacc ≃ 1
2

GM2
·Macc

R2

·Mout, vout, θout

Takeaway point #1: Make sure what you inject is consistent with your 
energy budget.



Where do jets deposit their energy?
✤ In some systems, jets deposit their energy very far from 

the source
✤ This would be bad for CE ejection

Cygnus A

More than a million times the 
scale of the emitting region

Reference: Zhang, Woosley & Heger 2004  

Simulation of GRB jet drilling through surrounding star



Where do jets deposit their energy?
✤ In some systems, jets deposit their energy very far from 

the source
✤ Jets may drive shocks into the CE, thus depositing some 

fraction of their available energy

Figure 2: Kinematics of the cold gas. Left panel shows the position-velocity (PV) plot of the large-scale gas disc in

colour scale and that of the circumnuclear gas in contours, both extracted along the major axis of the large-scale gas disc.

This plot highlights the extreme difference in the kinematics of the regularly rotating disc and the disturbed gas in the

nuclear region. The right panel shows the PV diagram of the circumnuclear gas extracted along the radio axis as shown

in the right-panel inset. The systemic velocity and the radio core are indicated in the right panel. The kinematics of the

gas distinctly deviates from regular rotation and the outflow is offset to the south-east of the radio core (see also Fig. 1).

Figure 3: Snapshots from the simulations. Mid-plane logarithmic density slices of simulation D from Mukherjee et al.6

at y = 0 showing the evolution of the jet-disc system. The jet plasma is in blue, the dense clouds in orange-red. Ablated

gas and shocked ambient medium is in yellow. The strongest interactions occur within the disc where the main jet stream

hits clouds head-on. These regions show enhanced velocity dispersions and bulk velocities up to 500 km s�1 (see PV

diagrams in Methods), and are location of sharp jet deflection and splitting. While the outer disc is dispersed but remains

largely intact, the inner 0.5 kpc region is largely cleared of gas by the jet by ⇠ 1 Myr.

Reference: Murthy et al. 2022  

jet material

dense clumps 

shocked ambient 
gas



Where do jets deposit their energy?
✤ In some systems, jets deposit their energy very far from 

the source
✤ Jets may drive shocks into the CE, thus depositing some 

fraction of their available energy
✤ Kelvin-Helmholtz instability may allow for mixing/

entrainment 

Reference: https://www.astro.princeton.edu/~jstone/Athena/tests/kh/kh.html

https://www.astro.princeton.edu/~jstone/Athena/tests/kh/kh.html


Where do jets deposit their energy?
✤ In some systems, jets deposit their energy very far from 

the source
✤ Jets may drive shocks into the CE, thus depositing some 

fraction of their available energy
✤ Kelvin-Helmholtz instability may allow for mixing/

entrainment 

Reference: Micono et al. 2000
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Fig. 5. Grey-scale images of the density distribution for light (ν = 10) adiabatic (left column) and radiative (right column) jets; 2D cuts at a
fixed z (z = 0) and at a fixed x (x = 5π).

at Figs. 5 and 6 at times t = 16 and t = 18, we see that the
adiabatic jet appears to be wider than the radiative one. This is
confirmed by Fig. 7c, which shows the behavior of the jet radius,
as defined in the previous subsection, as a function of time. The
difference between the adiabatic and the radiative cases how-
ever is not so large as for the dense jets. This same effect can
also be seen in the jet momentum distribution: in Fig. 8 we show
the grey-scale distribution in the (yz) plane of the average of the
jet momentum over the longitudinal direction for the two cases;
we see that the distribution is wider for the adiabatic jet. Since
the total amount of momentum retained by the jet is about the
same in the two cases, we also find that the maximum value of
the jet momentum, located at a position corresponding to the
initial jet axis, is smaller for the adiabatic jet (about half the
maximum value of the cooling jet momentum).

From the above description we can conclude that – in con-
trast to the heavy jet case – the presence of radiative losses does
not strongly modify the overall evolution of the instability in a
light jet. To investigate the reasons for this behaviour, we plot-
ted in Fig. 9 the total radiative power (jet plus ambient medium)
for heavy, light and equal-density jets. In each case, the peak in
the emission takes place shortly after the onset of the acoustic

stage, when shocks are well developed and not yet disrupted by
mixing.

The amount of energy lost through radiation is at least an
order ofmagnitude smaller in the light jet compared to the dense
jet. The reasons for this behavior are many; first, the growth of
the helical mode in the dense jet drives larger amplitude kinks
when compared to those observed in the light jet; in this way the
shock fronts are wider in the ν = 0.1 jet, and a larger amount of
material is compressed, heated and ultimately cooled through
radiation. In addition, thewavelength of themost unstablemode
may play an important role: a shorter wavelength, typical of
dense jets (see Hardee & Norman 1988) leads to the formation
of a higher number of shocks in a short time, increasing the effi-
ciency of the coolingmechanismat shocks (compare also Figs. 1
and 5).We also note that the ambient medium gives a significant
contribution to the subtraction of energy from the system, in par-
ticular when dense and equal-density jets are concerned; in fact,
shocks are driven by the jet into the ambient medium, and they
propagate in the external regions immediately surrounding the
jets; the spatial extension of these shocks can be consistently
larger that in the jet’s body.

802 M. Micono et al.: Kelvin-Helmholtz instability in three dimensional radiative jets

Fig. 5. Grey-scale images of the density distribution for light (ν = 10) adiabatic (left column) and radiative (right column) jets; 2D cuts at a
fixed z (z = 0) and at a fixed x (x = 5π).

at Figs. 5 and 6 at times t = 16 and t = 18, we see that the
adiabatic jet appears to be wider than the radiative one. This is
confirmed by Fig. 7c, which shows the behavior of the jet radius,
as defined in the previous subsection, as a function of time. The
difference between the adiabatic and the radiative cases how-
ever is not so large as for the dense jets. This same effect can
also be seen in the jet momentum distribution: in Fig. 8 we show
the grey-scale distribution in the (yz) plane of the average of the
jet momentum over the longitudinal direction for the two cases;
we see that the distribution is wider for the adiabatic jet. Since
the total amount of momentum retained by the jet is about the
same in the two cases, we also find that the maximum value of
the jet momentum, located at a position corresponding to the
initial jet axis, is smaller for the adiabatic jet (about half the
maximum value of the cooling jet momentum).

From the above description we can conclude that – in con-
trast to the heavy jet case – the presence of radiative losses does
not strongly modify the overall evolution of the instability in a
light jet. To investigate the reasons for this behaviour, we plot-
ted in Fig. 9 the total radiative power (jet plus ambient medium)
for heavy, light and equal-density jets. In each case, the peak in
the emission takes place shortly after the onset of the acoustic

stage, when shocks are well developed and not yet disrupted by
mixing.

The amount of energy lost through radiation is at least an
order ofmagnitude smaller in the light jet compared to the dense
jet. The reasons for this behavior are many; first, the growth of
the helical mode in the dense jet drives larger amplitude kinks
when compared to those observed in the light jet; in this way the
shock fronts are wider in the ν = 0.1 jet, and a larger amount of
material is compressed, heated and ultimately cooled through
radiation. In addition, thewavelength of themost unstablemode
may play an important role: a shorter wavelength, typical of
dense jets (see Hardee & Norman 1988) leads to the formation
of a higher number of shocks in a short time, increasing the effi-
ciency of the coolingmechanismat shocks (compare also Figs. 1
and 5).We also note that the ambient medium gives a significant
contribution to the subtraction of energy from the system, in par-
ticular when dense and equal-density jets are concerned; in fact,
shocks are driven by the jet into the ambient medium, and they
propagate in the external regions immediately surrounding the
jets; the spatial extension of these shocks can be consistently
larger that in the jet’s body.
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✤ YSOs
✤ White dwarfs
✤ Neutron stars

Systems with known jets

Reference: Matt and Pudritz 2005; Hartmann et al. 2016  

Ljet ∼ 1037 erg s−1·Mjet ∼ 10−3 ( R2
R⊙ ) M⊙ yr−1

Ljet ∼
GM*

·Mjet

R*

Takeaway point #2: Speed of outflow should depend on the compactness 
of the accretor.

vjet,MS ∼ 200 km s−1

vjet,WD ∼ 2000 km s−1

vjet,NS ∼ 20000 km s−1
If



✤ YSOs
✤ White dwarfs
✤ Neutron stars

Systems with known jets

Reference: Matt and Pudritz 2005; Hartmann et al. 2016; Watson et al. 1986  

Ljet ∼
GM*

·Mjet

R*

Ljet,SS433 ≳ 1039 erg s−1

Ljet ∼ 1037 erg s−1·Mjet ∼ 10−3 ( R2
R⊙ ) M⊙ yr−1If



There may be more to the story…
✤ X-ray binary hardness-intensity (or “q”) diagram

✤ single source can sometimes have a jet and sometimes not 

Reference: data for GX 339-4  



There may be more to the story…
✤ X-ray binary hardness-intensity (or “q”) diagram
✤ Radio loud vs. Radio quiet AGN

✤ otherwise similar sources can sometimes exhibit jets, 
sometimes not 

Open question #3: Why do systems sometimes show jets 
and sometimes not? 

Spectrum
.

• AGN
share a basic general form
for their continuum emission

• Flat broken power
law continuum - specific
flux F⌫ / ⌫

�↵. Usual to
plot ⌫F⌫ which gives the flux
per log interval in frequency

F =

Z
F⌫d⌫ =

Z
⌫F⌫

d⌫

⌫
=

Z
⌫F⌫d ln ⌫



Bondi-Hoyle-Lyttleton accretion
✤ “Wind tunnel” approximation (whenever )

✤ Uniform hydro
M2/M1 < 1/3

Reference: Blondin & Pope 2009; Edgar 2004

·MHL = πR2
a ρ∞v∞ = 4πG2M2ρ∞

v3∞
≲ 1M⊙ yr−1 ≫ ·MEdd

4
rin/Ra 0.0125

ℳ
No. 1, 2009 FLIP-FLOP INSTABILITY 97

Figure 1. Holyle–Lyttelton accretion model with uniform flow at Mach 4
entering from the right and passing a point source of gravity, which is located
at the apex of the shock cone marked by the heavy solid line. The gray lines
are streamlines as computed in the steady-state initial conditions described
in Section 2.3. The outermost streamlines correspond to an upstream impact
parameter of ζ slightly greater than Ra. The parameters of the model shown
here are γ = 4/3 and Rs = 0.0125 Ra .

accretion is marked by phases of disk accretion with relatively
constant specific angular momentum corresponding roughly to
that of a circular orbit at the surface of the accretor. These disk
phases occur for both directions of rotation, with sometimes
very abrupt transitions between the two.

Given the dramatic increase in available computing power in
the two decades since the discovery of the flip-flop instability,
we are at liberty to run a large number of simulations to refine
our computational model, to run at higher spatial resolution,
and to explore the parameter space more completely. In the
following subsections, we delineate the changes made to this
initial numerical model in order to arrive at what we consider
to be high-fidelity hydrodynamic simulations demonstrating the
exponential growth of the flip-flop instability.

2.1. Hydrodynamic Algorithm

A serious shortcoming of our initial model was the presence of
density inhomogeneities in the upstream flow due to numerical
noise. The source of these numerical fluctuations was traced
to the conservation of total energy at the expense of ensuring
constant entropy in the upstream supersonic flow traveling at
various angles with respect to the computational grid. To reduce
errors in internal energy created by subtracting kinetic energy
from the conserved total energy, we modified the algorithm
to remap internal energy rather than total energy when the
Mach number of the flow exceeds 3.0. This modification still
provides for accurate shock jump conditions because the original
conservation of total energy is used in zones containing a shock,
but it now allows one to model uniform supersonic (Mach =
4) planar flow across a cylindrical polar grid with minimal
numerical artifacts.

2.2. Upstream Boundary Conditions

Assuming a uniform planar flow at the upstream boundary
neglects any gravitational effects of the flow from infinity
to that boundary. As a result, the flow near the accretor
becomes dependent on the chosen radius of the outer boundary
(Benensohn et al. 1997). A more realistic boundary condition
is to assume a ballistic trajectory from infinity to the outer
boundary (Matsuda et al. 1991; Benensohn et al. 1997; Shima
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Figure 2. Time evolution of the specific angular momentum of the accreted
gas in our initial simulation with the standard VH-1 hydrodynamics code is
qualitatively similar to the results of FT. The flip-flop instability is characterized
by episodes of disk accretion with alternating directions of rotation.

et al. 1998). The resulting flow velocity at a given point (r,φ)
in space is then (Bisnovatyi-Kogan et al. 1979)

Vr = −V∞

√
1 +

Ra

r
− ζ 2

r2
, (4)

Vφ = V∞
ζ

r
, (5)

where ζ is the impact parameter at infinity of the streamline
passing through that point,

ζ = 1
2

[
r sin φ +

√
r2 sin2 φ − 2rRa(1 + cos φ)

]
. (6)

One can then find the local gas density using mass conser-
vation, equating the mass flux through a region bounded by ζ
and ζ + dζ at infinity to the mass flux through a region bounded
by r and r + dr for a point along the same streamline. For the
two-dimensional planar geometry used in this paper the result
is

ρ = ρ∞
ζ

2ζ − r sin φ
. (7)

Once the density is known, the pressure can be found by
assuming the flow is isentropic. The flow variables upstream
of the accretion shock in our simulations remain within 0.5% of
this analytic solution for an upstream Mach number of 4.

2.3. Steady Initial Conditions

Although often not explicitly stated, previous simulations
were typically started from an initial state of perfectly uniform
planar flow. The early evolution is then dominated by the
formation of a tail shock along the symmetry axis behind the
accretor and the subsequent expansion of the region of shocked
gas. This highly variable initial flow masks the origin of any
possible instability, and indeed makes it impossible to assess
whether the observed behavior is a true instability in the sense
that an initial equilibrium state will tend to evolve away from
equilibrium.

We address this problem by creating a steady-state solution
for initial conditions. We evolve our model on only half of the
grid, enforcing reflection symmetry about the line of centers.

tion rate suggested by Eq. (32) agreed well with
that observed, despite the flow pattern being ra-
ther different. Hunt studied flows which were not
very supersonic and were non-isothermal. A bow
shock formed upstream of the accretor. Upstream
of the shock, the flow pattern was very close to
the original ballistic approximation. Downstream,
the gas flowed almost radially towards the point
mass. A summary of early calculations of Bondi–
Hoyle–Lyttleton flow may be found in Shima
et al. (1985). The calculations in this paper are in
broad agreement with earlier work, but some
differences are noted and attributed to resolution
differences.

More recently, a series of calculations in three
dimensions have been performed by Ruffert in a
series of papers (Ruffert, 1994a,b, 1995, 1996;
Ruffert and Arnett, 1994). This series of papers
used a code based on nested grids, to permit high
resolution at minimal computational cost. Ruffert
(1994a) details the code, and presents simulations
of Bondi accretion (where the accretor is sta-
tionary). Bondi–Hoyle–Lyttleton flow was con-
sidered in Ruffert and Arnett (1994). The flow of
gas with M ¼ 3 and c ¼ 5=3 past an accretor of
varying sizes (0:01 < r=fBH < 10) was studied. For
accretors substantially smaller than fBH, the ac-
cretion rates obtained were in broad agreement
with theoretical predictions. The flow was found

to have quiescent and active phases, with smaller
accretors giving larger fluctuations. However,
these fluctuations were far less violent than the
‘flip-flop’ instability observed in 2D simulations
(see below). Ruffert (1994b) extended these sim-
ulations to cover a range of Mach numbers,
finding that higher Mach numbers tended to give
lower accretion rates (down to the original inter-
polation formula of Eq. (31). Ruffert studied the
flow of a gas with c ¼ 4=3 in the 1995 paper,
finding accretion rates comparable with the the-
oretical results. Small accretors and fast flows
were required before any instabilities appeared in
the flow. Nearly isothermal flow was considered
in Ruffert (1996). The accretion rates were slightly
higher than the theoretical values (except for the
smaller accretors), and the shock moved back to
become a tail shock. The oscillations in the flow
were less violent still.

The reason for the formation of the bow shock
is straightforward – the rising pressure in the flow.
As shown by Eq. (11), the flow is compressed as it
approaches the accretor. This compression will
increase the internal pressure of the flow, even-
tually causing a significant disruption. At this
point, the shock will form. This interpretation is
consistent with the behaviour observed in simu-
lations, where decreasing c moves the shock back
towards the accretor. However, the precise

Fig. 7. Accretion rates for plain Bondi–Hoyle–Lyttleton flow. The crossing time corresponds to fHL.
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Bondi-Hoyle-Lyttleton accretion
✤ “Wind tunnel” approximation

✤ Structured hydro

BHL accretion in SgXBs 5181

Figure 25. Top panel: Volumetric density snapshot for simulation OAO,
taken at t = 30.2ta. Overdensity corresponding to an inclined, turbulent
disc-like structure is visible. Bottom panel: Contours of vφ , taken at t =
30.1, 30.2, and 30.3ta. The scale is the same as the top panel. The flow is
structured but highly variable.

6.3 Results: OAO 1657−415

Simulation OAO lies in a very different regime of the parameter
space: the upstream gradients are large (ερ = 0.44), and companion
gravity and orbital effects are very important (Ra/RH ∼ 1). It is worth
noting that our results for OAO 1657−415 may not be directly
generalized to other systems with large upstream gradient, since
qualitative behaviour of the flow may depend on the relative strength
between different effects.

The Ṁ and 〈Lz〉 evolution, their distribution, and a snapshot of
the flow are shown in Figs 22−24, respectively. The flow is highly
asymmetric due to large curvature of the upstream wind and small
separation between the NS and the companion (Ra/D = 0.41). It is
also highly turbulent, with lower and more variable Ṁ (Fig. 23) and
stronger shocks around the accretor (see density panels in Fig. 24)
compared to simulations with smaller ερ , agreeing with the trend
we observe in the previous section.

One distinctive feature of simulation OAO is that it exhibits a
persistent disc-like structure around the accretor: the flow on the x–
y plane near the accretor mostly have vφ ∼ 0.2−1.5vKep in Fig. 24,
and disc-like overdensity is visible in Fig. 25. The NS is thus allowed
to accrete angular momentum efficiently (Figs 22 and 23), perhaps
explaining why OAO 1657−415 has significantly larger spin rate
than other systems in Table 1. This disc-like structure, however, is
not rotationally supported due to the large variation of vφ . Instead, it
is highly turbulent, thick and variable (see bottom panel of Fig. 25).
Moreover, accretion does not happen mainly through this disc-like
structure; a significant amount of accretion happens near the poles.

Our result is consistent with the observations that OAO
1657−415 undergoes periods of steady spin-up (Jenke et al. 2012)14

and that its accretion rate is inconsistent with BHL-like (i.e.
Ṁ ∼ ṀHL, corresponding to a stable or weakly unstable flow) wind-
fed accretion (Taani et al. 2019). Although these observations are
usually used to suggest the existence of an accretion disc, our result
shows that a turbulent disc-like structure (which is neither thin
nor rotationally supported) is also consistent with the observations.
Note that we do not rule out the possibility of disc formation; in
principle, disc formation is still possible provided sufficient cooling
(see Section 7.1).

7 D ISCUSSION

7.1 Disc formation and regimes of parameter space

Based on the flow stability and the possibility of forming a disc-
like structure, we can divide the parameter space into regimes
of different behaviours. Despite the large number of relevant
parameters, we will mainly focus on the (ερ , rin/Ra) parameter space
and assume that the behaviour is less sensitive to other parameters
(e.g. M, εv , and orbital effects).

The (ερ , rin/Ra) parameter space can be divided into the following
three regimes:15

(i) ε2
ρ ! rin/50Ra: stable flow, no disc formation. This and the

next regime have been discussed in Section 5. The accretion flow is
in a laminar steady state, with Ṁ ∼ ṀHL. The angular momentum
in the accretion flow (which originally comes from the upstream
gradient) is approximately conserved, and the mean specific angular
momentum of accreted material is 〈Lz〉∼ 0.4ερRav∞ (Fig. 26). Note
that we always have 〈Lz〉 & LKep in this regime.

(ii) rin/50Ra ! ε2
ρ ! Rshock/Ra: turbulent flow, no disc for-

mation. The flow near the accretor is highly turbulent (Section 5.4),
and Ṁ and 〈Lz〉 undergo large random variation. The variation of Ṁ

and 〈Lz〉 increase and their mean values decrease as rin decreases,
but they barely depend on ερ . This suggests that the accretion flow’s
memory of the (weak) upstream gradient is lost as it is disrupted
by the turbulence. The mean 〈Lz〉/LKep decreases as rin decreases.
As a result, the accretion flow cannot circulate before reaching the
accretor, and discs cannot form.

(iii) Rshock/Ra ! ε2
ρ ! 1: formation of turbulent disc-like

structures. Our simulation OAO lies in this regime (Section 6.3).
The flow circulates at a distance comparable to (or larger than) the
shock standoff distance Rshock. The assumption of small upstream
gradient used in the analysis of Section 5 is no longer valid, and
the flow (as well as the shock) should be highly asymmetric. In
this case, the incoming flow contains too much angular momentum
to be fully disrupted by turbulence, and forms a turbulent disc-like
structure. This gives highly variable Ṁ (due to the turbulence) and

14Jenke et al. (2012) also observe a mode where the NS spins down at a rate
uncorrelated with the flux. This may correspond to occasional disruption
of the disc-like structure (possibly due to physical effects that we do not
include, such as radiative feedback from NS), which is not observed in our
simulation.
15Here we only consider ερ ! 1. For ερ > 1, the behaviour may depend
on the shape of ρ∞(y), since approximating ρ∞(y) by linear or exponential
will no longer be appropriate; this regime is less relevant to SgXBs and is
beyond the scope of this paper.
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which is supported by a combination of pressure and rota-
tion. We model this regime using a reÑecting at(v

R
\ 0

inner boundary condition. Strictly, this calculationR \ Rin)
studies the importance of density gradients for generating
rotation in the initial envelope, before strong neutrino
cooling begins. With the caveat that the simulations are
inviscid, it provides an approximation to the case of a low
accretion rate and slow radial Ñow through a disk. Of
course, it is only valid for a restricted length of time, since in
the real situation material would not pile up indeÐnitely but
rather Ñow inward under the action of viscous forces.

At high accretion rates, when is much smaller thanRshthe scales we can resolve numerically, it is more appropriate
to take an absorbing inner boundary condition. Bondi-
Hoyle accretion with this boundary condition has already
been extensively studied numerically (e.g., Benensohn et al.
1997 ; Ru†ert 1997, and references therein), and although
there are di†erences between two- and three-dimensional
cases, it is known to lead to a disk on scales much greater
than that of the neutron star. We have run one example
with this boundary condition to compare with the afore-
mentioned simulations.

4. DISK FORMATION

Figure 1 shows results for a series of Bondi-Hoyle accre-
tion simulations in which the density gradient in the
ambient medium was varied from to All thevo \ 0 vo \ 0.4.
calculations used a grid with and andnÕ \ 144 n

R
\ 160,

used reÑecting inner boundary conditions. The inner
boundary was at and the outer boundary atRin \ R

a
/60

giving a grid with b ^ 1.03. The calculationsRout \ 4R
a
,

were run until where the time unit is the soundt \ 32t
a
, t

acrossing time of the accretion radius, We plot in FigureR
a
.

1 only the inner region of the accretion Ñow. The vo \ 0.2
run was also recomputed at modestly higher resolution

until in order to ascertain how(n
r
\ nÕ \ 200) t \ 100t

a
,

quickly mass accumulated in the outer parts of the disk at a
later time. No qualitative changes were observed to occur
during this longer simulation.

In the absence of density gradients in the ambient gas, the
structure of the Ñow closely resembles that seen in simula-
tions of Bondi-Hoyle accretion with the same parameters
and an absorbing inner boundary condition. A pressure-
supported, roughly symmetric envelope has developed

FIG. 1.ÈDensity (on a logarithmic scale) for di†erent values of the density gradient Top left : Top right : Bottom left : Bottomvo. vo \ 0. vo \ 0.1. vo \ 0.2.
right : The images measure on a side.vo \ 0.4. 4R

a

ϵρ = 0 ϵρ = 0.1

ϵρ = 0.2 ϵρ = 0.4

2D simulations 3D simulations
ρ∞ ∝ eϵρΔr/Ra



Bondi-Hoyle-Lyttleton accretion
✤ “Wind tunnel” approximation

Reference: Edgar 2004; Xu & Stone 2019; MacLeod et al. 2017

Uniform hydro

Structured hydro

Takeaway point #3: Accretion rate onto secondary in CEE will be < ·MHL

tion rate suggested by Eq. (32) agreed well with
that observed, despite the flow pattern being ra-
ther different. Hunt studied flows which were not
very supersonic and were non-isothermal. A bow
shock formed upstream of the accretor. Upstream
of the shock, the flow pattern was very close to
the original ballistic approximation. Downstream,
the gas flowed almost radially towards the point
mass. A summary of early calculations of Bondi–
Hoyle–Lyttleton flow may be found in Shima
et al. (1985). The calculations in this paper are in
broad agreement with earlier work, but some
differences are noted and attributed to resolution
differences.

More recently, a series of calculations in three
dimensions have been performed by Ruffert in a
series of papers (Ruffert, 1994a,b, 1995, 1996;
Ruffert and Arnett, 1994). This series of papers
used a code based on nested grids, to permit high
resolution at minimal computational cost. Ruffert
(1994a) details the code, and presents simulations
of Bondi accretion (where the accretor is sta-
tionary). Bondi–Hoyle–Lyttleton flow was con-
sidered in Ruffert and Arnett (1994). The flow of
gas with M ¼ 3 and c ¼ 5=3 past an accretor of
varying sizes (0:01 < r=fBH < 10) was studied. For
accretors substantially smaller than fBH, the ac-
cretion rates obtained were in broad agreement
with theoretical predictions. The flow was found

to have quiescent and active phases, with smaller
accretors giving larger fluctuations. However,
these fluctuations were far less violent than the
‘flip-flop’ instability observed in 2D simulations
(see below). Ruffert (1994b) extended these sim-
ulations to cover a range of Mach numbers,
finding that higher Mach numbers tended to give
lower accretion rates (down to the original inter-
polation formula of Eq. (31). Ruffert studied the
flow of a gas with c ¼ 4=3 in the 1995 paper,
finding accretion rates comparable with the the-
oretical results. Small accretors and fast flows
were required before any instabilities appeared in
the flow. Nearly isothermal flow was considered
in Ruffert (1996). The accretion rates were slightly
higher than the theoretical values (except for the
smaller accretors), and the shock moved back to
become a tail shock. The oscillations in the flow
were less violent still.

The reason for the formation of the bow shock
is straightforward – the rising pressure in the flow.
As shown by Eq. (11), the flow is compressed as it
approaches the accretor. This compression will
increase the internal pressure of the flow, even-
tually causing a significant disruption. At this
point, the shock will form. This interpretation is
consistent with the behaviour observed in simu-
lations, where decreasing c moves the shock back
towards the accretor. However, the precise

Fig. 7. Accretion rates for plain Bondi–Hoyle–Lyttleton flow. The crossing time corresponds to fHL.
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BHL accretion in SgXBs 5175

Figure 13. Same as Fig. 9, but for simulations D1–D4.

Figure 14. Same as Fig. 9, but for simulations E1–E4.

Figure 15. Same as Fig. 10, but for unstable simulations at rin = 0.01 (B3,
D3) and rin = 0.005 (B4, D4, E4). Distributions of Ṁ is sensitive to ερ , but
show little dependence on rin at given ερ .

Figure 16. Mean accretion rate of simulations with finite ερ . Stable
simulations (D1–D2, E1–E3) all have Ṁ ≈ 0.68ṀHL. The accretion rate
of unstable simulations depends mainly on rin and barely on ερ , with
approximately Ṁ ∝ r
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rate. Therefore, we plot the median values (pink and blue lines)
along with the 5th and 95th percentile ranges (shaded regions)
for mass accretion rate, Ṁ , as a function of density gradient, �S.

As density gradients steepen, the accretion rate into the sink
drops dramatically and becomes more variable. We see
accretion coefficients ( ˙ ˙M MHL) spanning more than an order
of magnitude as density gradient changes across typical values.
In all regions, the accretion efficiency is substantially lower
than accretion from a uniform medium. The imposition of a
density gradient breaks the symmetry of the inflowing material
(as seen in Figures 2 and 4). As opposed to the uniform
medium case, where momenta of opposing streamlines cancel,
there is net angular momentum in the flow, which forms a
barrier to efficient accretion when the circularization radius is
significantly outside the sink radius (MacLeod & Ramirez-
Ruiz 2015a). The increased variability in cases of steep density
gradient can be attributed to the increased turbulence of the
post-shock regions, as seen in Figures 2 through 5. The more
compressible H � 4 3 flow accretes at higher rates, particularly
in case of mild density gradient, � 1S 1, where radial pressure
gradients oppose flow convergence less strongly than in the
H � 5 3 case.

Figure 6 also compares our new accretion rates to a fitting
formula to the results of MacLeod & Ramirez-Ruiz (2015a) for

�R 0.05s , labeled M2015. The M2015 simulations all used
% � 2, H � 5 3, and the density gradient in the background
material, �S, was uniform rather than polytropic. Finally, there
was no corresponding pressure gradient (a uniform pressure
background was assumed). We find that despite these differences,
accretion rates of asimilar order of magnitude are found.
However, differences appear to lie in the functional form of
�S˙ ( )M and in the accretion rate for mild values of � 1S 1. The

two simulation suites presented here show higher mass accretion
rates for �1 1S0.2 1.5 by a factor of a few than M2015. One

likely contribution to this difference is the lower Mach number in
our current simulations for these density gradients.
Turning now to the accretion of angular momentum, Figure 7

evaluates the distributions of the magnitude of specific angular
momentum, ∣ ∣l , of material absorbed by the sink boundary.
These are normalized to the Keplerian specific angular
momentum at the sink surface, lkep (for details, see MacLeod
& Ramirez-Ruiz 2015a, Section 4.3). In mild density gradient
cases, accreted material has a relatively narrow distribution of
specific angular momenta, with typical values much less than
Keplerian. In these cases, the mass accretion rate is high
(compare to Figure 6) because the net angular momentum of
the flow does not substantially oppose accretion when
�∣ ∣l lkep. At higher values of the density gradient, the

distributions of specific angular momenta of accreted material
are much broader, with typical values of _∣ ∣l l 0.5kep . None of
our simulations show signs of accreting material with nearly
complete rotational support _∣ ∣l lkep, which makes sense

Figure 6.Median mass accretion rates into the sink boundary condition defined
by �R R0.05s a. Shaded regions denote the 5th to 95th percentile values of the
time-variable Ṁ . These are compared to the H � 5 3 case result of MacLeod &
Ramirez-Ruiz (2015a), which adopted % � 2 for all simulations (labeled
M2015). In all cases, we find that steepening density gradient inhibits
accretion, with typical values for large �S of �˙ ˙M MHL. The H � 4 3 cases
show systematically higher Ṁ than H � 5 3, perhaps because pressure
gradients provide less resistance to flow convergence and accretion in the more
compressible flow.

Figure 7. Distributions of specific angular momentum of material accreted by
the sink boundary condition ( �R R0.05s a). Values are normalized to the
specific keplerian angular momentum at the sink boundary: �l R vkep s kep. The
distributions contain a range of �∣ ∣l l 1kep , because material with full rotational
support at the sink boundary 2∣ ∣l l 1kep would not accrete. In cases of a
shallow density gradient, the net angular momentum of the incoming flow is
sufficiently small that flow circularizes inside the boundary condition. In these
cases, we see narrow distributions with �∣ ∣l l 1kep . These cases exhibit higher
accretion efficiencies in Figure 6. In steeper-gradient cases, accretion is limited
by angular momentumand we see overlapping, broad distributions of ∣ ∣l lkep,
with correspondingly low accretion efficiencies in Figure 6.
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✤ “Wind tunnel” approximation

✤ Magnetized background

Reference: Lee et al. 2014

·MHL ∼ 4πG2M2ρ∞
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∞)1/2

The Astrophysical Journal, 783:50 (19pp), 2014 March 1 Lee et al.

Figure 5. Same as Figure 4 but for perpendicular orientations.
(A color version of this figure is available in the online journal.)

two-dimensional slices through the center of the computational
domain show the gas density (color bar), velocity of the gas
(arrows), and magnetic flux direction (lines) for β ! 0.1 and
M = 1.41 and 4.47. Figure 6 takes the M = 1.41 and β = 1
runs and plots the local values of M, β, MA, and B2 at the same
late time.

The general evolution of the runs goes as follows. Initially,
gravity pulls nearby gas toward the sink particle, pinching the
magnetic field perpendicular to the far-field flow direction for the
parallel orientation, and parallel to the flow for the perpendicular
orientation. Gas flows relatively undisturbed until it hits the
developing shock at the Mach cone or, in some cases, a bow
shock propagating upstream. These shocks retard the gas to sub-
magnetosonic velocities, and the gas continues to flow along

field lines downstream of the shocks. Near the source, field
lines are drawn toward the sink particle, creating a network
of pathways for gas to flow onto the accretor. The extent to
which field lines can be dragged toward the source depends on
the values of M and MA; stronger fields are more resistant to
bending (compare, for example, field lines downstream of the
shocked region for the M = 1.41 parallel runs in the left panel
of Figure 4). Mass-loaded field lines that reach the sink are
relieved of their gas, eliminating the gravitational force holding
them at the sink. Like a released bowstring, the field snaps
back into the surrounding gas (this is prominently shown in the
perpendicular orientation for M = 1.41 and β = 1 in Figure 5;
here the downstream field lines were recently released). While
the mass accretion rate reaches an approximate steady state, the

8
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Figure 4. Slices in the x–z plane showing the region near the sink particle for the parallel orientations. The left and right columns have M = 1.41 and 4.47,
respectively. From top to bottom, the rows show β = 0.1, 1, 10, and 100. All plots are shown at t = 3tB except the β = 0.1 plot, which is at 0.5tB. The color map
indicates log10(ρ/ρ0), green lines represent magnetic flux tubes drawn from equidistant footpoints 0.5rB upstream of the sink particle, and white arrows represent the
flow pattern in the plane of the slice. The black circle indicates the size of the sink particle, equal to 4∆x.
(A color version of this figure is available in the online journal.)

with T = 10 K gas, rB ∼ 22,000 AU. For our default resolution
with seven levels of refinement, the finest level has a resolution
of ∼135 AU, and the radius of the sink particle is 540 AU. For
the Mach 44.7 run where the box size is reduced, the radius of
the sink particle is ∼2 AU. For this run only, the stellar field
could influence the gas surrounding the sink particle. However,
given the high momentum of the gas (MA = 10), this run
will mimic non-magnetic hydrodynamic flow where additional
non-ideal effects play little to no role in setting the final
accretion rate.

4. RESULTS

4.1. Morphology

All of our subsonic runs are also sub-Alfvénic, making the gas
morphologies and the final accretion rates well approximated
by the stationary models of Cunningham et al. (2012). In
this section we describe the supersonic cases, particularly the
M = 1.41 and M = 4.47 runs.

Figures 4 and 5 show snapshots late in the simulations
after a steady-state accretion rate has been established. These

7
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✤ “Wind tunnel” approximation

Reference: Edgar 2004; Xu & Stone 2019; MacLeod et al. 2017; Lee et al. 2014; Kaaz et al. 2022 (arXiv)
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tion rate suggested by Eq. (32) agreed well with
that observed, despite the flow pattern being ra-
ther different. Hunt studied flows which were not
very supersonic and were non-isothermal. A bow
shock formed upstream of the accretor. Upstream
of the shock, the flow pattern was very close to
the original ballistic approximation. Downstream,
the gas flowed almost radially towards the point
mass. A summary of early calculations of Bondi–
Hoyle–Lyttleton flow may be found in Shima
et al. (1985). The calculations in this paper are in
broad agreement with earlier work, but some
differences are noted and attributed to resolution
differences.

More recently, a series of calculations in three
dimensions have been performed by Ruffert in a
series of papers (Ruffert, 1994a,b, 1995, 1996;
Ruffert and Arnett, 1994). This series of papers
used a code based on nested grids, to permit high
resolution at minimal computational cost. Ruffert
(1994a) details the code, and presents simulations
of Bondi accretion (where the accretor is sta-
tionary). Bondi–Hoyle–Lyttleton flow was con-
sidered in Ruffert and Arnett (1994). The flow of
gas with M ¼ 3 and c ¼ 5=3 past an accretor of
varying sizes (0:01 < r=fBH < 10) was studied. For
accretors substantially smaller than fBH, the ac-
cretion rates obtained were in broad agreement
with theoretical predictions. The flow was found

to have quiescent and active phases, with smaller
accretors giving larger fluctuations. However,
these fluctuations were far less violent than the
‘flip-flop’ instability observed in 2D simulations
(see below). Ruffert (1994b) extended these sim-
ulations to cover a range of Mach numbers,
finding that higher Mach numbers tended to give
lower accretion rates (down to the original inter-
polation formula of Eq. (31). Ruffert studied the
flow of a gas with c ¼ 4=3 in the 1995 paper,
finding accretion rates comparable with the the-
oretical results. Small accretors and fast flows
were required before any instabilities appeared in
the flow. Nearly isothermal flow was considered
in Ruffert (1996). The accretion rates were slightly
higher than the theoretical values (except for the
smaller accretors), and the shock moved back to
become a tail shock. The oscillations in the flow
were less violent still.

The reason for the formation of the bow shock
is straightforward – the rising pressure in the flow.
As shown by Eq. (11), the flow is compressed as it
approaches the accretor. This compression will
increase the internal pressure of the flow, even-
tually causing a significant disruption. At this
point, the shock will form. This interpretation is
consistent with the behaviour observed in simu-
lations, where decreasing c moves the shock back
towards the accretor. However, the precise

Fig. 7. Accretion rates for plain Bondi–Hoyle–Lyttleton flow. The crossing time corresponds to fHL.

R. Edgar / New Astronomy Reviews 48 (2004) 843–859 851

BHL accretion in SgXBs 5175

Figure 13. Same as Fig. 9, but for simulations D1–D4.

Figure 14. Same as Fig. 9, but for simulations E1–E4.

Figure 15. Same as Fig. 10, but for unstable simulations at rin = 0.01 (B3,
D3) and rin = 0.005 (B4, D4, E4). Distributions of Ṁ is sensitive to ερ , but
show little dependence on rin at given ερ .

Figure 16. Mean accretion rate of simulations with finite ερ . Stable
simulations (D1–D2, E1–E3) all have Ṁ ≈ 0.68ṀHL. The accretion rate
of unstable simulations depends mainly on rin and barely on ερ , with
approximately Ṁ ∝ r

1/2
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rate. Therefore, we plot the median values (pink and blue lines)
along with the 5th and 95th percentile ranges (shaded regions)
for mass accretion rate, Ṁ , as a function of density gradient, �S.

As density gradients steepen, the accretion rate into the sink
drops dramatically and becomes more variable. We see
accretion coefficients ( ˙ ˙M MHL) spanning more than an order
of magnitude as density gradient changes across typical values.
In all regions, the accretion efficiency is substantially lower
than accretion from a uniform medium. The imposition of a
density gradient breaks the symmetry of the inflowing material
(as seen in Figures 2 and 4). As opposed to the uniform
medium case, where momenta of opposing streamlines cancel,
there is net angular momentum in the flow, which forms a
barrier to efficient accretion when the circularization radius is
significantly outside the sink radius (MacLeod & Ramirez-
Ruiz 2015a). The increased variability in cases of steep density
gradient can be attributed to the increased turbulence of the
post-shock regions, as seen in Figures 2 through 5. The more
compressible H � 4 3 flow accretes at higher rates, particularly
in case of mild density gradient, � 1S 1, where radial pressure
gradients oppose flow convergence less strongly than in the
H � 5 3 case.

Figure 6 also compares our new accretion rates to a fitting
formula to the results of MacLeod & Ramirez-Ruiz (2015a) for

�R 0.05s , labeled M2015. The M2015 simulations all used
% � 2, H � 5 3, and the density gradient in the background
material, �S, was uniform rather than polytropic. Finally, there
was no corresponding pressure gradient (a uniform pressure
background was assumed). We find that despite these differences,
accretion rates of asimilar order of magnitude are found.
However, differences appear to lie in the functional form of
�S˙ ( )M and in the accretion rate for mild values of � 1S 1. The

two simulation suites presented here show higher mass accretion
rates for �1 1S0.2 1.5 by a factor of a few than M2015. One

likely contribution to this difference is the lower Mach number in
our current simulations for these density gradients.
Turning now to the accretion of angular momentum, Figure 7

evaluates the distributions of the magnitude of specific angular
momentum, ∣ ∣l , of material absorbed by the sink boundary.
These are normalized to the Keplerian specific angular
momentum at the sink surface, lkep (for details, see MacLeod
& Ramirez-Ruiz 2015a, Section 4.3). In mild density gradient
cases, accreted material has a relatively narrow distribution of
specific angular momenta, with typical values much less than
Keplerian. In these cases, the mass accretion rate is high
(compare to Figure 6) because the net angular momentum of
the flow does not substantially oppose accretion when
�∣ ∣l lkep. At higher values of the density gradient, the

distributions of specific angular momenta of accreted material
are much broader, with typical values of _∣ ∣l l 0.5kep . None of
our simulations show signs of accreting material with nearly
complete rotational support _∣ ∣l lkep, which makes sense

Figure 6.Median mass accretion rates into the sink boundary condition defined
by �R R0.05s a. Shaded regions denote the 5th to 95th percentile values of the
time-variable Ṁ . These are compared to the H � 5 3 case result of MacLeod &
Ramirez-Ruiz (2015a), which adopted % � 2 for all simulations (labeled
M2015). In all cases, we find that steepening density gradient inhibits
accretion, with typical values for large �S of �˙ ˙M MHL. The H � 4 3 cases
show systematically higher Ṁ than H � 5 3, perhaps because pressure
gradients provide less resistance to flow convergence and accretion in the more
compressible flow.

Figure 7. Distributions of specific angular momentum of material accreted by
the sink boundary condition ( �R R0.05s a). Values are normalized to the
specific keplerian angular momentum at the sink boundary: �l R vkep s kep. The
distributions contain a range of �∣ ∣l l 1kep , because material with full rotational
support at the sink boundary 2∣ ∣l l 1kep would not accrete. In cases of a
shallow density gradient, the net angular momentum of the incoming flow is
sufficiently small that flow circularizes inside the boundary condition. In these
cases, we see narrow distributions with �∣ ∣l l 1kep . These cases exhibit higher
accretion efficiencies in Figure 6. In steeper-gradient cases, accretion is limited
by angular momentumand we see overlapping, broad distributions of ∣ ∣l lkep,
with correspondingly low accretion efficiencies in Figure 6.
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Figure 9. Steady-state mass accretion rates for the parallel orientations as a
function of the plasma β (horizontal axis) and sonic Mach numberM (symbols).
Here we have defined MBH = vBH,eff/cs. All accretion rates are normalized
to our Bondi–Hoyle accretion rate (Equation (9)). The solid line is our best-fit
Ṁ‖ with βch = 19.8 and n = 1.0 (Equation (27) or (41)). Subsonic runs with
β ! 100 are plotted with their second steady-state value. The dashed lines
connect these points to their initial steady-state values (no data point shown).

Figure 10. Steady-state mass accretion rates for the perpendicular orientations
as a function of the plasma β (horizontal axis) and sonic Mach number M
(symbols). All accretion rates are normalized to our Bondi–Hoyle accretion rate
(Equation (9)). The lines are our best-fit Ṁ⊥ with βch = 19.8 and n = 1.0
(Equation (30) or (42)) for four values of M: solid, M = 0; dashed, M = 1.41;
dot-dashed, M = 4.47; and dotted, M = 44.7. Subsonic runs with β ! 100
are plotted with their second steady-state value. The dashed lines connect these
points to their initial steady-state values (no data point shown).

average accretion rate to the hydrodynamic value decreases to
0.19 and 0.048, respectively. Figure 11 plots our parallel and
perpendicular fits, normalizing to ṀB (Equation (3)). Here the
disparity between the perpendicular and parallel fits can be seen,
especially when MA < 1. We remind the reader that our runs
only have one instance where MA < 1 and M > 1, β = 0.01
and M = 4.47, and we found little difference between the
parallel and perpendicular rates, whereas the fits predict that
the perpendicular rate should be 4.6 times the parallel rate.
However, this region of parameter space is only a small region

Figure 11. Mass accretion rate as a function of sonic Mach number (x-axis) and
plasma β. From top to bottom, the curves represent decreasing β values. The
solid curves show the parallel fit, while the dashed curves show the perpendicular
fit (Equations (27) and (30)). The right y-axis uses the fiducial parameters given
in Equation (3): M∗ = 0.4 M$ yr−1, n0 = 104 cm−3, and T = 10 K. The
points identify where MA = 1. The fits are identical at low Mach numbers,
and the perpendicular rate always equals or exceeds the parallel rate. Once
MBH,eff > MABH,eff/MBH,eff (Equation (30)), the perpendicular fit becomes
identical to the hydrodynamic fit, which is well approximated by the β = 100
curves.
(A color version of this figure is available in the online journal.)

of the overall parameter space (Figure 2), and our fits do predict
the disparity between the parallel and perpendicular rates in
the other three regions, as well as when MA = 1. Since we
chose our non-magnetized limit to well reproduce the results of
Ruffert (1996), our fits also succeed in predicting the accretion
rates for M < 1 and MA > 1, even though we performed no
runs ourselves in this region of parameter space.

5. VALIDITY OF THE STEADY-STATE APPROXIMATION

In both this work and that of Cunningham et al. (2012), we
have made several approximations in our analysis of Bondi-
and Bondi–Hoyle-type accretion: (1) the accretion must be in a
steady state (at least when averaged over times ∼tB = rB/cs);
(2) the accreting gas must not be self-gravitating; and (3) the
accretion rate must be determined by the mass of the particle,
not by the gravitational collapse of the ambient medium. As
we shall see, these approximations are all connected. We have
also assumed that the ambient medium is uniform and that the
particle is small compared to rABH, but we shall not discuss these
approximations here. To keep our discussion simple, we restrict
ourselves to Bondi accretion.

We define the Bondi mass as

MB ≡ 4πρ0r
3
B, (43)

so that the Bondi accretion rate is

ṀB ( MB

tB
, (44)

where the approximation consists of setting λ ( 1. The Bondi
mass is the mass of gas located within the Bondi radius of
the particle and is approximately the mass accreted within one
Bondi time. For steady-state accretion, the mass of the particle
must change slowly, i.e., the mass accreted in one Bondi time
must be small compared to the particle mass: ṀBtB ) M∗.
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Figure 3. When jets are active, the feedback they exert on the in-
falling gas suppresses Ṁ. This can be seen in the time series of
various quantities, as depicted here. From top to bottom, the pan-
els shown are: Ṁ, the mass accretion rate; P, the jet luminosity (in
units of PBZ2, see Eq. 9); ⌘, the jet efficiency; and �, the dimen-
sionless magnetic flux. Each quantity is calculated using smoothed
profiles of Ṁ, Ė and � that are averaged over a moving window of
duration ⇠ 3.75Ra/v1. This is done to make the plot more read-
able, and in Fig. 8, we show the same figure without the averaging.
In some of the �1 = 10 curves in Fig. 3, a portion of the data at
early times is omitted. This is because the mass accretion rate very
briefly turns negative, making some calculated quantities undefined.
Because we smooth the data presented here, this undefined calcula-
tion propagates to nearby values as well.

In panel (c), we depict the jet efficiency ⌘, defined as
P/Ṁ ⇥ 100%. We can immediately see that ⌘ reaches ex-
tremely large values of 200 - 300%, especially when �1 ⇠
10-50. This is in the upper range of values measured in sim-
ulations of magnetically-arrested disks (Tchekhovskoy et al.
2011), suggesting our flow here is also magnetically arrested.
This is further supported in panel (d), where we depict the
dimensionless magnetic flux �. Here, we see that our large
jet efficiencies are also associated with values of � that are
as high as ⇠ 50 - 80. This is consistent with our arguments
given in §2.1, where we suggested that despite having rela-
tively weak background magnetic fields, the persistent accu-

mulation of magnetic flux within the accretion cross-section
will cause the flow to become magnetically-arrested within
a few accretion timescales (e.g., Eq. 7). Interestingly, this
is not true when � = 4/3. Since the gas is much more com-
pressible at lower adiabatic indices, the mass accretion rate
is higher, but the dimensionless magnetic flux is only around
⇠ 10. This seems to suggest more compressible flows are
worse at holding onto their magnetic flux. This could have
implications for BHL-like flows where � = 4/3 or lower adia-
batic indices are appropriate, such as radiation pressure dom-
inated flows (i.e., BH common envelopes, as discussed in §4)
or flows where cooling is efficient.

3.3. Scalings with �1

In Figure 4, we present various quantities as a function of
�1. First, in panel (a), we show the time-averaged value
of the jet efficiency5 ⌘ as a function of �1 for each simu-
lation. We also depict the corresponding ±1 standard devi-
ation error bars. In general, we see a declining trend in ⌘
with higher �1. This is expected, as background media with
weaker magnetic fields will cause the BH to launch weaker
jets. Simulation B1R53 is an exception to this trend; here, ⌘
decreases despite the lower value of �1. This is because at
�1 = 1, magnetic fields are dynamically important before ac-
cretion even begins. Perhaps counter-intuitively, this makes
the jets less powerful. In all other simulations, the gas can
readily drag magnetic flux with it to the event horizon. If
magnetic fields are initially as strong as the gas, then the gas
is less effective at dragging field lines with it.

These trends are supported by panel (b) of Fig. 4, where
we plot the time-averaged mass accretion rate Ṁ and its ±1
standard deviation error bars. Here, we see that Ṁ increases
with increasing �1, and is anti-correlated with ⌘ in panel
(a). We also highlight the differences in the black and blue
data points, where black points indicate a time-average over
periods when the jet is both quiescent and active (labeled ‘to-
tal’) and blue points indicate a time-average only over peri-
ods when the jet is active (labeled ’active’). We see that the
increase of Ṁ with increasing �1 holds when averaging over
all activity periods, but that Ṁ is relatively flat as a function
of �1 if we only include periods when the jet is active. Yet,
as seen from panel (a), the jet efficiency, even when measured
only during active phases, is lower when �1 is higher. This
suggests that the Ṁ -�1 relation is modulated by how often
the jet is powered, rather than how powerful the jet itself is.

In panel (c) of Fig. 4, we plot the time-averaged jet power
P along with its ±1 standard deviation error bars in units of
ĖHL ⌘ 1

2 ṀHLv2
1, which is the energy flux that the BH cap-

tures from the wind. This is in contrast to Fig. 3, where we

5 We calculate ⌘ using the time-averaged values of Ṁ and Ė, rather than
time-averaging ⌘ itself.
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Figure 3. When jets are active, the feedback they exert on the in-
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mulation of magnetic flux within the accretion cross-section
will cause the flow to become magnetically-arrested within
a few accretion timescales (e.g., Eq. 7). Interestingly, this
is not true when � = 4/3. Since the gas is much more com-
pressible at lower adiabatic indices, the mass accretion rate
is higher, but the dimensionless magnetic flux is only around
⇠ 10. This seems to suggest more compressible flows are
worse at holding onto their magnetic flux. This could have
implications for BHL-like flows where � = 4/3 or lower adia-
batic indices are appropriate, such as radiation pressure dom-
inated flows (i.e., BH common envelopes, as discussed in §4)
or flows where cooling is efficient.

3.3. Scalings with �1

In Figure 4, we present various quantities as a function of
�1. First, in panel (a), we show the time-averaged value
of the jet efficiency5 ⌘ as a function of �1 for each simu-
lation. We also depict the corresponding ±1 standard devi-
ation error bars. In general, we see a declining trend in ⌘
with higher �1. This is expected, as background media with
weaker magnetic fields will cause the BH to launch weaker
jets. Simulation B1R53 is an exception to this trend; here, ⌘
decreases despite the lower value of �1. This is because at
�1 = 1, magnetic fields are dynamically important before ac-
cretion even begins. Perhaps counter-intuitively, this makes
the jets less powerful. In all other simulations, the gas can
readily drag magnetic flux with it to the event horizon. If
magnetic fields are initially as strong as the gas, then the gas
is less effective at dragging field lines with it.

These trends are supported by panel (b) of Fig. 4, where
we plot the time-averaged mass accretion rate Ṁ and its ±1
standard deviation error bars. Here, we see that Ṁ increases
with increasing �1, and is anti-correlated with ⌘ in panel
(a). We also highlight the differences in the black and blue
data points, where black points indicate a time-average over
periods when the jet is both quiescent and active (labeled ‘to-
tal’) and blue points indicate a time-average only over peri-
ods when the jet is active (labeled ’active’). We see that the
increase of Ṁ with increasing �1 holds when averaging over
all activity periods, but that Ṁ is relatively flat as a function
of �1 if we only include periods when the jet is active. Yet,
as seen from panel (a), the jet efficiency, even when measured
only during active phases, is lower when �1 is higher. This
suggests that the Ṁ -�1 relation is modulated by how often
the jet is powered, rather than how powerful the jet itself is.

In panel (c) of Fig. 4, we plot the time-averaged jet power
P along with its ±1 standard deviation error bars in units of
ĖHL ⌘ 1

2 ṀHLv2
1, which is the energy flux that the BH cap-

tures from the wind. This is in contrast to Fig. 3, where we

5 We calculate ⌘ using the time-averaged values of Ṁ and Ė, rather than
time-averaging ⌘ itself.
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Figure 5. The drag forces exerted on the BH by the gas are less efficient for stronger background magnetic fields, and can become negative
when the gas density near the BH is higher in the upstream region than in the downstream region. This effect is pronounced most strongly
when �1 = 1, where drag is negative up to radii & 4Ra. Top row. Here, we plot radial profiles of the drag force exerted on the black hole. The
drag forces depicted are the addition of the linear momentum that is accreted and the gravitational drag from the gas integrated over a volume
of radius r. In the right panel, we plot the drag forces for each simulation, averaged over times > 10Ra/v1. We also include the instantaneous
drag force for a steady-state unmagnetized run (black). In the left panel, we time-average drag in simulation B100R53, split into times when
the jet is active (blue) and quiescent (red), with corresponding ±1 standard deviation shaded regions. Bottom row. Here, we plot three slices
of gas density in the x - y plane, with corresponding inset panels of the x - z plane. From left to right, we show: simulation B100R53 in the
quiescent phase, B100R53 in the active phase, and B1R53 (where the jet is always active). Each panel also has pink velocity streamlines.

ulation also exhibits negative drag for some values of the en-
closed radius, up to about r = Ra in most cases. When �1 = 1,
the entire profile changes significantly, and remains negative
out to & 4Ra. Since some of our simulations are highly time-
dependent due to the intermittency of the jets, in the top left
panel we compare time-averaged radial profiles of the drag
force for quiescent and active phases in simulation B100R53.
Surprisingly, there is not a significant difference between the
two phases; drag is only mildly suppressed when the jet turns
on, despite the mass accretion rate dropping by an order of
magnitude because of the jet feedback (Fig. 3).

The measured drag rates can be explained by the distribu-
tion of the gas around the BH. Since the BH moves in the
-x̂ direction, the gas accumulated along the x axis is a large
contributor to the drag force. In the bottom row of Fig. 5, we
plot three x-y slices of gas density, along with corresponding
x - z slices in the inset panels. From left to right, the first two
snapshots shown are from the quiescent and active phases of

simulation B100R53. What we can see is that despite the
jet clearing out a significant amount of material in the active
phase, the x-y slices are quite similar. This explains why the
drag forces in both phases are similar; the jet mainly removes
material from the polar axis, leaving gas along the x axis only
mildly perturbed. If we turn to the third simulation shown,
B1R53, we see that the flow morphology is significantly dif-
ferent from the other cases. The bow shock is much broader,
and there is a large accumulation of dense gas upstream from
the BH. Meanwhile, there is a magnetized low-density cavity
downstream of the BH. This distribution naturally causes the
drag force to be negative, explaining why the �1 = 1 drag
force is significantly different than the other simulations.

This argument is further supported by comparing the �1 =
10 drag forces to the a = 0 drag forces (which also has �1 =
10). Outside Ra, both have roughly equal drag forces, despite
the absence of jets when a = 0. There is a difference at r <Ra,
where the a = 0 simulation is more negative than the other

Fd,x = ∫ ρ
x
r3 dV

Fp,x = ∫ Tr
x −gdθdϕ

FHL = ·MHLv∞ = 4G2M2ρ∞
v2∞

14

Figure 7. Here, we depict our results for unmagnetized general-relativistic BHL accretion, simulation NBNR53. Upper left. The mass
accretion rate is plotted as a function of time, normalized to the Hoyle-Lyttleton accretion rate. The mass accretion rate is in quasi-steady state
after ⇠ 20Ra/v1 and is less than but within an order unity factor of ṀHL. Lower left. We plot the drag forces (which include gravitational drag
and accreted linear momentum) experienced by the BH. The solid curve is our numerical results and the dotted line is the analytic prediction
given in Eq. 16, where we set rmin = Ra. Right. Here we depict a density slice in the x - z plane with velocity streamlines at t ⇠ 40Ra/v1. The
standard features of BHL accretion are present: the supersonic wind forms a bow shock, the bow shock is disconnected from the central object,
and streamlines are focused behind the BH and are accreted within a dense wake.
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Takeaway point #5: Drag force is less efficient with stronger B-fields
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Figure 2. Density maps and velocity vectors of simulation #13 at three different times given in days. Left: the equatorial plane, x–y. The green crosses mark the
position of the centre of mass (gas + particles), while the red crosses mark the position of the centre of mass of the gas (without the particles). ‘Particles’ refer
here and in what follows to the core and companion. Right: the meridional, ρ–z, plane that traces the companion movement, ρ ≡ ±

√
(x − xc)2 + (y − yc)2,

where (xc, yc) is the momentary position on the orbital plane of the giant’s core. An ‘X’ symbol marks the location of the companion and a black circle marks
the giant’s core. The length of the arrow is proportional to the gas speed, with scaling of 100 km s−1 as indicated with the arrow above the first panel.
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Figure 1. Snapshots showing the density of jet gas (i.e. jet tracer) in g cm�3 at various times throughout the simulation. The secondary is located at the centre
with its softening radius shown by a circle. The jet is initially vertical and extended but becomes deformed and eventually choked inside dense envelope gas. In
the top two rows, slices are orthogonal to the orbital plane and to the line connecting the primary core and the secondary particles, shown as would be viewed
from the position of the primary core particle (the azimuthal component of the secondary’s orbital motion is toward the left). The bottom two rows show the
same times, but now sliced through both particles, perpendicular to the orbital plane, with the primary core particle situated left-of-centre. Its softening sphere
is shown by a magenta circle.

and velocity are the same for co-spatial jet gas and envelope gas
in our simulation, the envelope gas dominates energetically as well.
We thus conclude that this behaviour is caused by entrainment of
thermalized jet material by envelope material flowing through the
double-funnel-shaped partially evacuated region inside the torus.

While some of the material entering the subgrid accretion sphere

of radius 4X4 ⇡ 0.56'� accretes, much of the gas flowing toward
the torus centre instead passes through to the other side. The same
behaviour is seen in simulations with accretion but no jet, and even in

MNRAS 000, 1–16 (2021)
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Figure 6. The orbital separation between the giant’s core and the companion
as a function of time. The launching of jets in simulations #6 (orange dashed
line) and #9 (red dash–dotted line) stops the spiralling-in earlier and at a
larger and more eccentric orbit compared with simulations with no jets #5
(blue solid line) and #8 (green dotted line).

times when the companion enters the deep envelope, they eventually
break out along the polar directions.

Fig. 10 presents the temperature maps in the meridional plane (i.e.
perpendicular to the equatorial plane) that contains the companion
and core, at t = 452.9 d. The temperature distribution at the end of
simulation #8, with no jets, has a large-scale spherical symmetry
with a number of fluctuations. In the equatorial plane (that we do
not show here) there is a spiral pattern. In simulation #9, with jets,
the interaction of the jets with the envelope creates two shocks, of
the jets and of the envelope, that heat the gas to high temperatures.
The right-hand panel in Fig. 10 emphasizes the bipolar structure
that the jets form around the companion that launches the jets.

In Fig. 11 we show the contribution of the jets to mass removal.
The curves show the variation with time of the mass in the envelope,
Mgas, in, that we define as the gas that resides inside Rout = 1 au (thin
green lines), of the total mass (bound + unbound) Mout (thick blue
lines) that flowed out through a sphere of radius Rout = 1 au, and of
the unbound mass Munbound

out (orange lines) that flowed out through
a sphere of radius Rout = 1 au. Solid lines are for simulation #8
with no jets, and dashed lines are for simulation #9 with jets. In
simulation #8, with no jets, ≈ 12 per cent of the ejected mass is
unbound, in agreement with simulation SIM3 of Iaconi et al. (2018)
and with simulations Enzo3 and Enzo8 of Passy et al. (2012) that
have similar initial parameters and were also performed with ENZO.
In simulation #9, with jets, ≈ 33 per cent of the ejected mass is
unbound.

We note here that there is another similarity between the results
of Iaconi et al. (2018) and our results in that our simulation #5 has
the same level of energy and angular momentum conservation as
their very similar simulation SIM3. Similar level of conservation
exists in the other simulations without jets (#1, #3, #8). We discuss
the energy conservation level in simulations with jets in Section 4.2.

To emphasize the role of jets in shaping the outflow we plot
in Fig. 12 the total mass-loss (bound and unbound) per unit solid
angle that flows out from a sphere of radius Rout = 1 au (blue) and
its average velocity (brown), from the two hemisphers combined, as
a function of angle from the equatorial plane. The main difference
is that in the simulation with jets (+ symbols) the jets eject more
mass relative to the simulation with no jets (O symbols) along the
polar directions, and at much higher velocities.

3.3 Energetic of jets and mass ejection

From Fig. 11 we learned that the simulation with jets (#9) ejects
much more mass than the simulation with no jets (#8). We here
examine the energy of the unbound mass that leaves the system.
In Fig. 13 we present the energy that the unbound mass carries
with it as it leaves the system in both the simulation with jets
(#9; dashed orange line) and in the simulation with no jets (#8;
solid blue line). The dotted red line represents the kinetic energy
injected by the jets in simulation #9. In Section 4.2 we will discuss
the effects that replacing envelope gas with jet gas has on the
energetics. (We term this ‘mass removal’, or numerical accretion,
as we remove mass from the grid that the companion supposedly
accretes.)

The gravitational energy that the companion-core binary system
releases by the end of the simulations is ≈ 1 × 1046 erg in simulation
#9, and ≈ 3 × 1046 erg in simulation #8. These values are more
than an order of magnitude larger than the energy carried by the
unbound mass in simulation #8 (∼0.2 × 1046 erg). This means that
the efficiency of the orbital energy in ejecting mass from the system
is very low. This is a result shared by all numerical simulations of
the CEE that do not include recombination energy (see list of papers
in Section 1).

In Fig. 13 we see that the jets that inject a kinetic energy of
Ejets(#9) = 2.4 × 1045 erg by the end of the simulation increase the
energy of the unbound gas by !Eunbound

out (#9) ≈ 7.4 × 1045 erg with
respect to the simulation without jets. The fact that !Eunbound

out (#9) >

Ejets(#9) shows that the jets are very efficient in removing mass,
not only by adding their energy to the unbound mass, but also by
increasing the fraction of the released orbital energy that goes to the
unbound gas. Wilson & Nordhaus (2019) argue that convection, via
mixing, can distribute the released orbital energy in the CE, and by
that the convection increases mass removal efficiency. Chamandy
et al. (2019) further point out that it is crucial to include convection
as energy transport since convection might redistribute energy such
that a larger fraction of mass is unbound. It is possible that the
jets in our simulations act to redistribute the released orbital energy
in the envelope, and therefore contribute to the unbinding of gas,
similarly to what Wilson & Nordhaus (2019) suggested to be the
role of convection. The suggestion that jets and convection both
could act as energy distribution agents and could play an important
role in the CEE would require a study by itself.

However, the uncertainties in the exact efficiency of mass removal
by jets are large because of the numerical complexity in launching
jets. We examine here the influence of one numerical parameter in
launching jets. In Fig. 14 we present the energy that the unbound
mass carries in three simulations with a jets’ mass-loss rate of
Ṁjets = 0.003M$ yr−1 but different lengths of the cones into which
we inject the jets, Ljets = 3.6 R$ in simulation #11, Ljets = 7.2 R$
in simulation #12 (like in simulation #9), and Ljets = 14.4 R$
in simulation #13. As in all simulations the jets have the same
velocity and the same mass-loss rate, the kinetic energy power of the
jets is the same in the three simulations Ėjets = 1.5 × 1038 erg s−1.
At the end of the three simulations the jets injected a total
kinetic energy of Ejets = 7.6 × 1045 erg. The energy of the unbound
mass that left the grid is quite different in the three simulations,
Eunbound

out (#11) = 1.7 × 1046 erg = 2.2Ejets, Eunbound
out (#12) = 2.1 ×

1046 erg = 2.7Ejets, Eunbound
out (#13) = 2.6 × 1046 erg = 3.4Ejets.

We can compare the energy that the jets carry with the relevant
binding energy of the envelope. The initial binding energy of the
envelope layer from r = 20 R$, i.e. the typical final orbital separation
of our simulations, to the giant surface is 2.2 × 1046 erg. This is
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Figure 6. The orbital separation between the giant’s core and the companion
as a function of time. The launching of jets in simulations #6 (orange dashed
line) and #9 (red dash–dotted line) stops the spiralling-in earlier and at a
larger and more eccentric orbit compared with simulations with no jets #5
(blue solid line) and #8 (green dotted line).

times when the companion enters the deep envelope, they eventually
break out along the polar directions.

Fig. 10 presents the temperature maps in the meridional plane (i.e.
perpendicular to the equatorial plane) that contains the companion
and core, at t = 452.9 d. The temperature distribution at the end of
simulation #8, with no jets, has a large-scale spherical symmetry
with a number of fluctuations. In the equatorial plane (that we do
not show here) there is a spiral pattern. In simulation #9, with jets,
the interaction of the jets with the envelope creates two shocks, of
the jets and of the envelope, that heat the gas to high temperatures.
The right-hand panel in Fig. 10 emphasizes the bipolar structure
that the jets form around the companion that launches the jets.

In Fig. 11 we show the contribution of the jets to mass removal.
The curves show the variation with time of the mass in the envelope,
Mgas, in, that we define as the gas that resides inside Rout = 1 au (thin
green lines), of the total mass (bound + unbound) Mout (thick blue
lines) that flowed out through a sphere of radius Rout = 1 au, and of
the unbound mass Munbound

out (orange lines) that flowed out through
a sphere of radius Rout = 1 au. Solid lines are for simulation #8
with no jets, and dashed lines are for simulation #9 with jets. In
simulation #8, with no jets, ≈ 12 per cent of the ejected mass is
unbound, in agreement with simulation SIM3 of Iaconi et al. (2018)
and with simulations Enzo3 and Enzo8 of Passy et al. (2012) that
have similar initial parameters and were also performed with ENZO.
In simulation #9, with jets, ≈ 33 per cent of the ejected mass is
unbound.

We note here that there is another similarity between the results
of Iaconi et al. (2018) and our results in that our simulation #5 has
the same level of energy and angular momentum conservation as
their very similar simulation SIM3. Similar level of conservation
exists in the other simulations without jets (#1, #3, #8). We discuss
the energy conservation level in simulations with jets in Section 4.2.

To emphasize the role of jets in shaping the outflow we plot
in Fig. 12 the total mass-loss (bound and unbound) per unit solid
angle that flows out from a sphere of radius Rout = 1 au (blue) and
its average velocity (brown), from the two hemisphers combined, as
a function of angle from the equatorial plane. The main difference
is that in the simulation with jets (+ symbols) the jets eject more
mass relative to the simulation with no jets (O symbols) along the
polar directions, and at much higher velocities.

3.3 Energetic of jets and mass ejection

From Fig. 11 we learned that the simulation with jets (#9) ejects
much more mass than the simulation with no jets (#8). We here
examine the energy of the unbound mass that leaves the system.
In Fig. 13 we present the energy that the unbound mass carries
with it as it leaves the system in both the simulation with jets
(#9; dashed orange line) and in the simulation with no jets (#8;
solid blue line). The dotted red line represents the kinetic energy
injected by the jets in simulation #9. In Section 4.2 we will discuss
the effects that replacing envelope gas with jet gas has on the
energetics. (We term this ‘mass removal’, or numerical accretion,
as we remove mass from the grid that the companion supposedly
accretes.)

The gravitational energy that the companion-core binary system
releases by the end of the simulations is ≈ 1 × 1046 erg in simulation
#9, and ≈ 3 × 1046 erg in simulation #8. These values are more
than an order of magnitude larger than the energy carried by the
unbound mass in simulation #8 (∼0.2 × 1046 erg). This means that
the efficiency of the orbital energy in ejecting mass from the system
is very low. This is a result shared by all numerical simulations of
the CEE that do not include recombination energy (see list of papers
in Section 1).

In Fig. 13 we see that the jets that inject a kinetic energy of
Ejets(#9) = 2.4 × 1045 erg by the end of the simulation increase the
energy of the unbound gas by !Eunbound

out (#9) ≈ 7.4 × 1045 erg with
respect to the simulation without jets. The fact that !Eunbound

out (#9) >

Ejets(#9) shows that the jets are very efficient in removing mass,
not only by adding their energy to the unbound mass, but also by
increasing the fraction of the released orbital energy that goes to the
unbound gas. Wilson & Nordhaus (2019) argue that convection, via
mixing, can distribute the released orbital energy in the CE, and by
that the convection increases mass removal efficiency. Chamandy
et al. (2019) further point out that it is crucial to include convection
as energy transport since convection might redistribute energy such
that a larger fraction of mass is unbound. It is possible that the
jets in our simulations act to redistribute the released orbital energy
in the envelope, and therefore contribute to the unbinding of gas,
similarly to what Wilson & Nordhaus (2019) suggested to be the
role of convection. The suggestion that jets and convection both
could act as energy distribution agents and could play an important
role in the CEE would require a study by itself.

However, the uncertainties in the exact efficiency of mass removal
by jets are large because of the numerical complexity in launching
jets. We examine here the influence of one numerical parameter in
launching jets. In Fig. 14 we present the energy that the unbound
mass carries in three simulations with a jets’ mass-loss rate of
Ṁjets = 0.003M$ yr−1 but different lengths of the cones into which
we inject the jets, Ljets = 3.6 R$ in simulation #11, Ljets = 7.2 R$
in simulation #12 (like in simulation #9), and Ljets = 14.4 R$
in simulation #13. As in all simulations the jets have the same
velocity and the same mass-loss rate, the kinetic energy power of the
jets is the same in the three simulations Ėjets = 1.5 × 1038 erg s−1.
At the end of the three simulations the jets injected a total
kinetic energy of Ejets = 7.6 × 1045 erg. The energy of the unbound
mass that left the grid is quite different in the three simulations,
Eunbound

out (#11) = 1.7 × 1046 erg = 2.2Ejets, Eunbound
out (#12) = 2.1 ×

1046 erg = 2.7Ejets, Eunbound
out (#13) = 2.6 × 1046 erg = 3.4Ejets.

We can compare the energy that the jets carry with the relevant
binding energy of the envelope. The initial binding energy of the
envelope layer from r = 20 R$, i.e. the typical final orbital separation
of our simulations, to the giant surface is 2.2 × 1046 erg. This is
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Takeaway point #6: Presence of outflows may stop inspiral sooner and at 
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Jets in common envelope simulations 5625

Figure 7. Density maps and velocity vectors in the equatorial plane z = 0 at t = 99.3 d of simulation #8 without jets (left-hand panel) and simulation #9 with
jets (right-hand panel). The companion orbits counterclockwise, and symbols and scaling are as in Fig. 2.

Figure 8. The mass-loss rate of unbound mass, Ṁunbound
out , i.e. with a total

positive energy, from a sphere of radius 1 au as a function of time. The
jets of simulations #6 and #9 produce higher mass-loss rates than in the
corresponding simulations #5 and #8 that have no jets.

larger than the energy that the jets carry, and might further point to
the role of jets not only in carrying energy, but in redistribution of
the orbital energy.

Our conclusion from this section and from Fig. 11 is that despite
the large numerical uncertainties, the jets are quite efficient in
removing mass from the CE.

4 N U M E R I C A L C O N S I D E R AT I O N S

In this section we examine our numerical method limitations. We
start discussing how the numerical parameter Ljets, the length of
the cone within which we numerically inject the jets, affects our
results. We then check energy conservation, and end by discussing
numerical resolution effects.

4.1 The effect of the injection length, Ljets, on the simulation
results

For each of the two simulations #6 and #9 we perform a second
simulation, #7 and #10, respectively, that differs only in the value
of Ljets. All four simulations have Ṁjets = 0.001 M! yr−1. We also
performed three simulations with a higher Ṁjets = 0.003 M! yr−1

and Ljets = 3.6 (#11), 7.2 (#12), or 14.4 R! (#13).
Although Ljets is a numerical expedient to inject the jets into the

grid, we can try and give it a physical meaning. We assume that an
accretion disc around the companion launches the jets, so we assert
that Ljets should be of the same order of magnitude as the radius
of the accretion disc, Racc. Assuming accretion from a Roche lobe
overflow, we use equation (4.20) from Frank, King & Raine (2002),
and obtain:

Ljets # Racc = a (1 + q)
(
0.5 − 0.227 log10 q

)4
, (1)

where a is the orbital separation and q = Mdonor/Maccretor is the
mass ratio between the donor star and the accretor star. For our
simulations q = 0.88/0.3 and

Ljets # 7.86
(

a

83 R!

)
R!. (2)

The chosen values of Ljets = 3.6, 7.2, and 14.4 R! bracket this
value. These values are also several times the radius of the putative
main-sequence star companion.

In Fig. 15 we compare simulations #6 (solid blue line; smaller
Ljets) with #7 (yellow dashed line; larger Ljets), both starting on
the surface of the giant and #9 (green dotted line; smaller Ljets)
with #10 (red dash–dotted line; larger Ljets), both starting at twice
the giant’s radius. The separation (upper left panel), unbound mass-
loss rate (Ṁunbound

out ; upper right panel), total mass-loss (Mout; bottom
left panel), and the total unbound mass-loss (Munbound

out ; bottom right
panel) are as described in Section 3.2.

From Fig. 15 we identify the following numerical properties.
Significant differences appear only when the companion is deep
inside the envelope. We can partially understand this as at smaller
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Jets in simulations of CE evolution
✤ Presence of jets leads to (3x) greater mass loss

Reference: Shiber et al. 2019  

Jets in common envelope simulations 5625

Figure 7. Density maps and velocity vectors in the equatorial plane z = 0 at t = 99.3 d of simulation #8 without jets (left-hand panel) and simulation #9 with
jets (right-hand panel). The companion orbits counterclockwise, and symbols and scaling are as in Fig. 2.

Figure 8. The mass-loss rate of unbound mass, Ṁunbound
out , i.e. with a total

positive energy, from a sphere of radius 1 au as a function of time. The
jets of simulations #6 and #9 produce higher mass-loss rates than in the
corresponding simulations #5 and #8 that have no jets.

larger than the energy that the jets carry, and might further point to
the role of jets not only in carrying energy, but in redistribution of
the orbital energy.

Our conclusion from this section and from Fig. 11 is that despite
the large numerical uncertainties, the jets are quite efficient in
removing mass from the CE.

4 N U M E R I C A L C O N S I D E R AT I O N S

In this section we examine our numerical method limitations. We
start discussing how the numerical parameter Ljets, the length of
the cone within which we numerically inject the jets, affects our
results. We then check energy conservation, and end by discussing
numerical resolution effects.

4.1 The effect of the injection length, Ljets, on the simulation
results

For each of the two simulations #6 and #9 we perform a second
simulation, #7 and #10, respectively, that differs only in the value
of Ljets. All four simulations have Ṁjets = 0.001 M! yr−1. We also
performed three simulations with a higher Ṁjets = 0.003 M! yr−1

and Ljets = 3.6 (#11), 7.2 (#12), or 14.4 R! (#13).
Although Ljets is a numerical expedient to inject the jets into the

grid, we can try and give it a physical meaning. We assume that an
accretion disc around the companion launches the jets, so we assert
that Ljets should be of the same order of magnitude as the radius
of the accretion disc, Racc. Assuming accretion from a Roche lobe
overflow, we use equation (4.20) from Frank, King & Raine (2002),
and obtain:

Ljets # Racc = a (1 + q)
(
0.5 − 0.227 log10 q

)4
, (1)

where a is the orbital separation and q = Mdonor/Maccretor is the
mass ratio between the donor star and the accretor star. For our
simulations q = 0.88/0.3 and

Ljets # 7.86
(

a

83 R!

)
R!. (2)

The chosen values of Ljets = 3.6, 7.2, and 14.4 R! bracket this
value. These values are also several times the radius of the putative
main-sequence star companion.

In Fig. 15 we compare simulations #6 (solid blue line; smaller
Ljets) with #7 (yellow dashed line; larger Ljets), both starting on
the surface of the giant and #9 (green dotted line; smaller Ljets)
with #10 (red dash–dotted line; larger Ljets), both starting at twice
the giant’s radius. The separation (upper left panel), unbound mass-
loss rate (Ṁunbound

out ; upper right panel), total mass-loss (Mout; bottom
left panel), and the total unbound mass-loss (Munbound

out ; bottom right
panel) are as described in Section 3.2.

From Fig. 15 we identify the following numerical properties.
Significant differences appear only when the companion is deep
inside the envelope. We can partially understand this as at smaller
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Jets in simulations of CE evolution
✤ Presence of jets leads to (3x) greater mass loss

✤ Particularly in the polar direction

Reference: Shiber et al. 2019  

Jets in common envelope simulations 5621

Figure 3. Mass-loss rate per unit solid angle maps (left-hand panels; in M! sr−1 s−1) and total mass-loss per unit solid angle maps (right-hand panels; in
M! sr−1) of a spherical shell with a radius of Rout = 2 au of simulation #13 at three times. The times are (from top to bottom) 152, 339, and 444 d from the
beginning of the simulation, as in Fig. 2. Zero latitude is the equatorial plane and zero longitude (at the centre) is the initial location of the companion, namely
the positive x-axis. The companion is moving towards higher angles, namely from right to left.

most CE simulations and it is a direct result of angular momentum
conservation [see Iaconi et al. (2017) for an estimate of the angle
containing the ejecta]. In these simulations most of the unbound
mass comes from the equatorial outflow. In our simulations with
jets the equatorial outflow is slower than the polar outflow and
is only mildly unbound. The escape velocity from the system at
Rout = 2 au is approximately 30 km s−1 while the equatorial ring
outflows at slighter higher velocities of 40 km s−1. At later times,
once the jets succeed to penetrate through the dense envelope they
cause a substantial mass ejection. In this phase the mass-loss rate
becomes more isotropic, but the outflow velocity is still larger along
the polar directions. The smooth red colour in the bottom left panel
of Fig. 3 indicates the smooth mass-loss rate. The bottom left panel
of Fig. 4 shows the faster polar outflow.

When the companion enters the envelope the jets and gravitational
interaction eject mass in a highly non-spherical geometry, with a
preferred outflow direction. Momentum conservation implies that
the core and companion (the ‘particles’) and the bound gas move in
the other direction. In the middle left panel of Fig. 2 we see dense

gas that escapes to the right. The bound system starts moving to the
left.

To elaborate further on the time that the companion enters the
envelope we present the flow at four times in Fig. 5. The panels show
density maps and velocity vectors in the tangential, ρ̄–z, plane of
simulation #13. The time of the bottom right panel of Fig. 5 is
the same as in the middle row of Figs 2–4. The tangential plane
cuts through the companion and is perpendicular to the equatorial
plane as well as to the line joining the secondary star to the core
of the primary (the two particles). In the panels the companion
is in the centre of the frame (black ‘X’) and moves to the right.
At early times (upper left panel), the massive fan that trails the
secondary star from behind diverts the jets stream forward (to the
right in the panel). The bending forward of the jets pushes material
in the opposite direction. The first three panels of Fig. 5 show
a complicated interaction between the jets and envelope, i.e. the
bending of the jets and the formation of vortices. The last panel
of Fig. 5 presents two properties of the interaction, the ejection of
high-velocity gas to the right (the long arrows at the outskirts of the
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Figure 7. Density maps and velocity vectors in the equatorial plane z = 0 at t = 99.3 d of simulation #8 without jets (left-hand panel) and simulation #9 with
jets (right-hand panel). The companion orbits counterclockwise, and symbols and scaling are as in Fig. 2.

Figure 8. The mass-loss rate of unbound mass, Ṁunbound
out , i.e. with a total

positive energy, from a sphere of radius 1 au as a function of time. The
jets of simulations #6 and #9 produce higher mass-loss rates than in the
corresponding simulations #5 and #8 that have no jets.

larger than the energy that the jets carry, and might further point to
the role of jets not only in carrying energy, but in redistribution of
the orbital energy.

Our conclusion from this section and from Fig. 11 is that despite
the large numerical uncertainties, the jets are quite efficient in
removing mass from the CE.

4 N U M E R I C A L C O N S I D E R AT I O N S

In this section we examine our numerical method limitations. We
start discussing how the numerical parameter Ljets, the length of
the cone within which we numerically inject the jets, affects our
results. We then check energy conservation, and end by discussing
numerical resolution effects.

4.1 The effect of the injection length, Ljets, on the simulation
results

For each of the two simulations #6 and #9 we perform a second
simulation, #7 and #10, respectively, that differs only in the value
of Ljets. All four simulations have Ṁjets = 0.001 M! yr−1. We also
performed three simulations with a higher Ṁjets = 0.003 M! yr−1

and Ljets = 3.6 (#11), 7.2 (#12), or 14.4 R! (#13).
Although Ljets is a numerical expedient to inject the jets into the

grid, we can try and give it a physical meaning. We assume that an
accretion disc around the companion launches the jets, so we assert
that Ljets should be of the same order of magnitude as the radius
of the accretion disc, Racc. Assuming accretion from a Roche lobe
overflow, we use equation (4.20) from Frank, King & Raine (2002),
and obtain:

Ljets # Racc = a (1 + q)
(
0.5 − 0.227 log10 q

)4
, (1)

where a is the orbital separation and q = Mdonor/Maccretor is the
mass ratio between the donor star and the accretor star. For our
simulations q = 0.88/0.3 and

Ljets # 7.86
(

a

83 R!

)
R!. (2)

The chosen values of Ljets = 3.6, 7.2, and 14.4 R! bracket this
value. These values are also several times the radius of the putative
main-sequence star companion.

In Fig. 15 we compare simulations #6 (solid blue line; smaller
Ljets) with #7 (yellow dashed line; larger Ljets), both starting on
the surface of the giant and #9 (green dotted line; smaller Ljets)
with #10 (red dash–dotted line; larger Ljets), both starting at twice
the giant’s radius. The separation (upper left panel), unbound mass-
loss rate (Ṁunbound

out ; upper right panel), total mass-loss (Mout; bottom
left panel), and the total unbound mass-loss (Munbound

out ; bottom right
panel) are as described in Section 3.2.

From Fig. 15 we identify the following numerical properties.
Significant differences appear only when the companion is deep
inside the envelope. We can partially understand this as at smaller
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Figure 10. Like middle row of Fig. 9 but presenting the temperature maps.

Figure 11. The variation of the envelope gas mass, i.e. gas inside a radius of
Rout = 1 au, Mgas, in (thin green lines), of the total mass (bound + unbound)
that flowed out through Rout = 1 au, Mout (thick blue lines), and of the
unbound mass that flowed out through a sphere of Rout = 1 au, Munbound

out
(orange lines). Solid lines are for simulation #8 and dashed lines are for
simulation #9 (with jets).

separations the length Ljets = 7.2R! (and more so Ljets = 14.4 R!)
is only slightly smaller than the final orbital separation of a !
25 R!. However, the differences in mass-loss properties between
the simulation with jet #9 and that without, simulation #8, appear
before day 300 (Fig. 11), and well before the effects caused by the
injection length Ljets come into play (approximately at 400 in the
comparable simulations #9 and #10). From this we conclude that
the effect of jets in removing mass is not due to the injection length
expedient. We also see that the real differences between simulations
with jets and without jets (comparing simulations #6 with #5 and
simulations #9 with #8) appear before the numerical effects of Ljets

(comparing simulations #6 with #7 and simulations #9 with #10) by
comparing Fig. 8 and the upper right panel of Fig. 15, respectively.

The upper left panel of Fig. 15 shows that simulations with
larger Ljets have similar final orbital separation, but the eccentricity

Figure 12. The total mass per unit solid angle that flows out from a sphere
of radius Rout = 1 au (blue) and its average velocity (brown) as a function of
the angle θ from the equatorial plane, for simulation #8 (no jets; O symbols)
and for simulation #9 (with jets; + symbols). The amounts shown are from
the two hemispheres combined. The equator is at θ = 0 and the poles are
at θ = 90. Jets produce more evenly distributed mass ejection with much
faster outflows at high latitudes.

is larger. This is particularly so for simulations starting with the
companion at twice the giant’s radius. The comparison between
simulations #11–13 shows the same trend.

In discussing the dependence of the mass ejection with the value
of Ljet, we need to consider separately the simulations starting with
the companion on the surface, i.e. simulations #6 and #7 from
simulations #9 and #10 that start with the companion at a0 = 2R1.
The jets with larger Ljets in simulation #7 eject and unbind less
mass. On the other hand, when the companion starts well outside
the envelope, a0 = 2R1, larger Ljets leads to higher mass-loss rates
(i.e. more mass is lost in simulation #10 than in #9). Similarly,
simulations with higher mass injection rates into the jets, all starting
at twice the primary’s radius (simulations #11, #12, and #13) show
the same trend: simulation #13 (Ljets = 14.4) unbinds 48 per cent
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Takeaway points
✤ Make sure what you inject is consistent with your energy 

budget. 
✤ Speed of outflow should depend on the compactness of 

the accretor
✤ Accretion rate onto secondary in CEE will be  
✤ Persistence & strength of magnetized jet depends on 
✤ Drag force is less efficient with stronger B-fields
✤ Presence of outflows may stop inspiral sooner and at 

larger radii

< ·MHL
β∞



Open questions
✤ Are the jet ingredients provided by the central object or a 

surrounding accretion disk?
✤ How much of a disk’s angular momentum is carried 

away by the jet?
✤ Why do systems sometimes show jets and sometimes 

not?
✤ We know jets can drill out of stars (GRBs), so what would 

be different in CEE?


