# Evolution into common envelope phases

# Morgan MacLeod Center for Astrophysics | Harvard & Smithsonian morgan.macleod@cfa.harvard.edu

#### **Common envelope interactions transform binary systems**

#### Example: formation of merging pairs of neutron stars



#### The lead-in to common envelope phases

Evolution to contact

From mass transfer to engulfment

Appearance pre-CE

### **Evolution to contact**



binaries have a broad eccentricity distribution:

Do tides synchronize and circularize these systems before mass transfer?



-> competition between donor's expansion and tidal dissipation (e.g. Vigna-Gomez+ 2020)

binaries have a broad eccentricity distribution:

#### Do tides synchronize and circularize these systems before mass transfer?



#### **Radius growth timescale**

- type of star
- stellar evolutionary state
- consequence of nuclear evolution at core

#### **Tidal dissipation timescale**

- spectrum of oscillatory modes that are excited by the tide
- dissipation mechanism
- type of stellar envelope (radiative or convective)

-> competition between donor's expansion and tidal dissipation (e.g. Vigna-Gomez+ 2020)



Oscillation implies a "dynamical" tide, vs an "equilibrium" tide

**Tidal oscillations** are usually expressed in spherical harmonic basis functions. A given oscillatory "mode" has a characteristic frequency and is described by a degree, azimuthal order, and radial wavenumber *(l,m,n)* 





fundamental modes: n=0, (e.g. I=2, m= +/- 2)

frequency ~ omega\_dyn

Dissipation of coherent oscillation through interaction with disordered field of convection Radiative envelope



gravity (g) modes: n>>0, (e.g. I=2, m= +/- 2)

internal bouancy waves with frequency << omega\_dyn

# Dissipation through radiative losses (damping) near surface

# Donor stars at the start of dyn. unstable mass transfer -> That lead to DNS formation



Donor stars at the start of dyn. unstable mass transfer -> That lead to DNS formation



Donor stars at the start of dyn. unstable mass transfer -> That lead to DNS formation



Donor stars at the start of dyn. unstable mass transfer -> That lead to DNS formation



**COMPAS** binary pop



More sophisticated modeling of the spectrum of dynamical oscillations excited and their dissipation on the convective field.



(Vick 2019, Vick, MM+ 2020)

More sophisticated modeling of the spectrum of dynamical oscillations excited and their dissipation on the convective field.



(Vick 2019, Vick, MM+ 2020)

starting with an initially-thermal eccentricity distribution:



(Vick 2019, Vick, MM+ 2020)

Often eccentric & asynchronous in massive-star systems!



Dynamical tides w/large amplitudes! (MacLeod+ 2019)



Eccentric mass transfer e.g. Glanz+ 2020

#### The lead-in to common envelope phases

Evolution to contact

From mass transfer to engulfment

Appearance pre-CE

# **Modeling approach**

#### Studying interacting binaries in Athena++



- spherical coordinate system centered on the donor star (excise stellar core!)
- gas in the domain interacts with two point masses, one at the coordinate origin, one orbiting
- simulations are in the reference frame of the donor star, arbitrary frame rotation (add fictitious forces)
- static mesh refinement
- approximate (static) treatment of self-gravity

(MacLeod, Ostriker, & Stone 2018a)

## Modeling the onset of a stellar merger



(initially tidally-locked — star co-rotates with the orbit)

#### **Outflows & Ejecta**



#### Modeling the onset of a stellar merger



# **Orbital evolution**



#### Angular momentum exchange



#### Angular momentum exchange

on which stellar core is most of the net torque exerted?

most torque is localized near the accretor

#### **Representation with point-mass evolution equations**



How (non)conservative is the mass exchange?

RLOF python package: https://github.com/morganemacleod/RLOF

(MacLeod & Loeb 2020a,b)

The previous slide assumed a known mass-radius relation for the donor star. This is simple in the case of adiabatic mass loss, but is more complex when the donor star is (partially) thermally adjusting to mass transfer.

Critical, and subtle, implications for stability of MT

-> See ... Pavlovskii+ 2015,2017, Marchant+ 2021



(Marchant+ 2021)



(Blagorodnova, Klencki+ 2021)



Bulk flow partially advects the stellar luminosity

**Roche lobe overflow** 



Advection is ~perpendicular to temperature gradient

 –> Expect less advective degradation of stellar luminosity

#### The lead-in to common envelope phases

Evolution to contact

From mass transfer to engulfment

Appearance pre-CE





<sup>(</sup>MacLeod & Loeb 2020b)

# *Internal shocks:* redistribute angular momentum, determine thermal evolution





(MacLeod & Loeb 2020b)



#### major increase in **opacity**

 $\kappa_{\rm eff} \sim X_{\rm d} \kappa_d$ 

$$\sim 5 \text{ cm}^2 \text{ g}^{-1} \left( \frac{X_{\text{d}}}{5 \times 10^{-3}} \right) \left( \frac{\kappa_{\text{d}}}{10^3 \text{ cm}^2 \text{ g}^{-1}} \right)$$

dust condenses when

 $T \lesssim 10^3 {
m K}$ 

Example merging system: 1 solar mass, 30 solar radii, q=1/3



(MacLeod, De, Loeb, 2022)



(MacLeod, De, Loeb, 2022)







(MacLeod, De, Loeb, 2022)

Summary

**Tides circularize** low-mass systems before mass exchange; many massive systems remain eccentric and asynchronous

#### Mass transfer and loss drives systems toward coalescence

**Circumbinary material** shapes the observable appearance of transients

> CE ejection outcomes should be associated with a population of IR transients











**Extended progenitor?** 

Teff ~ 4300 K Long duration ~ 1000 d