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Common envelope interactions transform binary systems
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Example: formation of merging pairs of neutron stars



The lead-in to common envelope phases

Evolution to contact


From mass transfer to engulfment


Appearance pre-CE




Tides

Evolution to contact

Stellar evolution

Dynamical evolution

Initial conditions 
of CE phases



Tidal evolution and onset of mass transfer 

binaries have a broad eccentricity distribution:


Do tides synchronize and circularize these systems before mass transfer?

Evolution to contact

?

-> competition between donor’s expansion and tidal dissipation
(e.g. Vigna-Gomez+ 2020)
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binaries have a broad eccentricity distribution:


Do tides synchronize and circularize these systems before mass transfer?

-> competition between donor’s expansion and tidal dissipation
(e.g. Vigna-Gomez+ 2020)

Evolution to contact

Radius growth timescale 
- type of star

- stellar evolutionary state

- consequence of nuclear 

evolution at core

Tidal dissipation timescale 
- spectrum of oscillatory 

modes that are excited by 
the tide


- dissipation mechanism

- type of stellar envelope 

(radiative or convective)




Tidal evolution and onset of mass transfer 

when the gravitational potential is time-varying 
*** in the stellar fluid frame*** the fluid oscillates 
around its equilibrium figure. 

—> examples: an eccentric orbit or 
non-synchronous rotation


—> counter-example: circular orbit 
and syncrhonous rotation

Oscillation implies a “dynamical” tide, vs an “equilibrium” tide

Tidal oscillations are usually expressed in spherical 
harmonic basis functions. A given oscillatory “mode” 
has a characteristic frequency and is described by a 
degree, azimuthal order, and radial wavenumber (l,m,n)



Tidal evolution and onset of mass transfer 

Radiative envelopeConvective envelope

fundamental modes: 
 n=0, (e.g. l=2, m= +/- 2)

gravity (g) modes: 
 n>>0, (e.g. l=2, m= +/- 2)

internal bouancy waves with 
frequency << omega_dynfrequency ~ omega_dyn

Dissipation of coherent oscillation 
through interaction with disordered 
field of convection

Dissipation through radiative losses 
(damping) near surface



Typical conditions for NSs in CE phases

COMPAS binary pop 
synthesis model


(Vigna-Gomez, MM+ 
2020)

Donor stars at the start of dyn. unstable mass transfer  
-> That lead to DNS formation

CEEs that lead to DNS formation 9

Figure 2. Main properties of the donor star at the onset of RLOF leading to the CEE in DNS-forming binaries. Top: HR diagram
coloured by stellar phase: HG (blue), GB (orange), CHeB (yellow) and EAGB (purple). The sizes of the markers represent their sampling
weight. We show the progenitor of the luminous red nova M101 OT2015-1 (Blagorodnova et al., 2017) with a star symbol. The solid
black lines indicate ZAMS and TAMS loci for a grid of SSE models (Hurley et al., 2000) at Z ¥ 0.0142. We show the evolution of a
single non-rotating 16 M§ star, from ZAMS to the end of the giant phase: the dotted dark-grey line shows a MIST stellar track from
Choi et al. (2016) and the dashed grey line shows the stellar track from Pols et al. (1998, 2009). The dash-dotted light-blue and solid
green lines show how fitting formulae from Hurley et al. (2000) lead to a bifurcation after the MS for stars with masses between 12.9
and 13.0 M§. This bifurcation is related to which stars are assumed to begin core-helium-burning while crossing of the HG or only after
it: see the presence (lack) of the blue loop in the 12.9 (13.0) M§ track. Grey lines indicate stellar radii of R = {10, 100, 500, 1000} R§.
Bottom: Normalised distributions in blue (left vertical axis) and CDFs in orange (right vertical axis) of luminosity (left panel), e↵ective
temperature (middle panel) and stellar type (right panel). Black error bars indicate 1‡ sampling uncertainty in the histograms. Grey
lines show 100 bootstrapped distributions that indicate the sampling uncertainty in the CDFs. The CDFs show a subset of 365 randomly
sampled values, which is the same number of DNS in our population, for each bootstrapped distribution.

CEEs that lead to DNS formation 11

Figure 3. Pre-CEE donor properties of all DNS-forming systems: mass (top), core mass fraction (middle), and envelope binding energy
(bottom). The core mass fraction is defined as fcore,donor © mcore,donor/mdonor. In the case of a double-core CEE, the binding energy
is the sum of the individual envelope binding energies. Yellow systems with binding energies larger than log10 |Ebind/erg| ¥ 48.5
during the red supergiant phase are double-core CEE systems. For more details, see Section 3.4. See the caption of Figure 2 for further
explanations.



Typical conditions for NSs in CE phases

COMPAS binary pop 
synthesis model


(Vigna-Gomez, MM+ 
2020)

Donor stars at the start of dyn. unstable mass transfer 
-> That lead to DNS formation
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Figure 4. Pre-CEE orbital properties of all DNS-forming systems. The binary properties presented are eccentricity (top) and semi-major
axis (bottom). The orbital properties do not account for tidal circularisation. For more details, see Section 3.5. See the caption of Figure
2 for further explanations.

12 Vigna-Gómez et al.

Figure 4. Pre-CEE orbital properties of all DNS-forming systems. The binary properties presented are eccentricity (top) and semi-major
axis (bottom). The orbital properties do not account for tidal circularisation. For more details, see Section 3.5. See the caption of Figure
2 for further explanations.

(Note: eccentricities initialized at zero)
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COMPAS binary pop 
synthesis model


(Vigna-Gomez, MM+ 
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Donor stars at the start of dyn. unstable mass transfer 
-> That lead to DNS formation
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Figure 5. Pre-CEE mass of all DNS-forming systems. The binary properties presented are total mass (top) and mass ratio (bottom).
For more details, see Section 3.5. See the caption of Figure 2 for further explanations.
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Figure 5. Pre-CEE mass of all DNS-forming systems. The binary properties presented are total mass (top) and mass ratio (bottom).
For more details, see Section 3.5. See the caption of Figure 2 for further explanations.
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Figure 5. Pre-CEE mass of all DNS-forming systems. The binary properties presented are total mass (top) and mass ratio (bottom).
For more details, see Section 3.5. See the caption of Figure 2 for further explanations.
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Figure 6. Ratio of tidal circularisation timescale to the star’s radial expansion timescale for all DNS-forming systems. We present
the default scenario where all evolved stars, including HG and CHeB stars, are assumed to have formed a fully convective envelope. If
log10(·circ/·radial) Æ 0, we assume that binaries circularise before the onset of the CEE. Binaries indicated with blue (red) dots are
predicted to have circular (eccentric) orbits. We cap ≠2 Æ log10(·circ/·radial) Æ 2 to improve the plot appearance. The grey shaded
region in the histogram highlights the systems which circularise by the onset of RLOF. For more details, see Section 3.6. See the caption
of Figure 2 for further explanations.

Table 2 Distinct DNS sub-populations as described in Section 4.1 and presented in Figure 7.

Sub-population Threshold Dominant Channel Donor Envelope Colour Fraction
Giants - II (double core) GB, EAGB fully convective blue 0.37
Cool log10(Te�/K) < 3.73 I (single core) HG, CHeB partially convective orange 0.38
Hot log10(Te�/K) Ø 3.73 I (single core) HG, CHeB radiative/convective yellow 0.25

Figure 7. DNS-forming binaries clustered by the donor type at the onset of the CEE. Sub-populations: (a) giant donors with fully-
convective envelopes in blue, (b) HG or CHeB donors with partially-convective envelopes in red, and (c) HG or CHeB donors which
have not yet formed a deep convective envelope in yellow. For more details, see Section 3.4. See the caption of Figure 2 for further
explanations.
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Tidal evolution and onset of mass transfer 

(Vick 2019, Vick, MM+ 2020)

More sophisticated modeling of the spectrum of dynamical oscillations 
excited and their dissipation on the convective field. 

Tidal Dissipation in Massive Binary Star Systems 3

When the primary star evolves o↵ of the main sequence,
the binary separation is large compared to the stellar radius,
and tidal interactions are weak. However, as the stellar ra-
dius expands, the primary experiences a stronger tidal po-
tential from its companion. Additionally, the timescale for
strong tidal interactions in the binary (roughly the duration
of a pericentre passage) begins to approach the dynamical
time (R3

1/GM1)
1/2 of the giant star. Under these conditions,

the standard weak friction model of tides breaks down, and
can severely underestimate the strength of tidal interactions.
We use the theory of dissipation in a giant star in an eccen-
tric orbit developed in VL20 to study how stellar evolution
and tidal dissipation jointly shape the orbital evolution of
the binary.

2.1 Stellar Models

We have used version 11701 of the MESA stellar evolu-
tion code to calculate the structural evolution of 10M� and
15M� stars from the end of the main sequence to carbon
depletion (Paxton et al. 2011). We assumed an initial metal-
licity of Z = Z� = 0.0142 (Asplund et al. 2009), and used
the “Dutch” wind scheme. The inlist to reproduce our cal-
culations will be made available at the MESA Marketplace
(http://cococubed.asu.edu/mesa market/inlists.html). The
result is a suite of stellar profiles at di↵erent time stamps
in the star’s evolution. The time interval between profiles
ranges from 10 years (during periods of rapid radius expan-
sion) to 5⇥ 105 years when the stellar structure is relatively
static.

At each timestep, we used the code GYRE to calculate
the eigenfrequency and mode profile of the stellar l = 2
f-mode for a given MESA model (assuming no rotation)
(Townsend & Teitler 2013). We implemented a vacuum outer
boundary and a zero radial displacement inner boundary.
For models with a convective envelope, the transition be-
tween the core and envelope was used as the location of
the inner boundary. We used the condition on the convec-
tive velocity vc(r) > 103 cm/s to identify rc, the start of
the envelope. Note that, after a deep convective envelope
has developed, rc/R1 ⌧ 1. For models from earlier in the
star’s evolution, before the development of deep convection,
we chose an inner boundary just outside of the composition
transition from predominantly hydrogen to predominantly
helium.

2.2 Calculation of the Tidal Dissipation Rate in a Giant
Star

As the primary M1 transitions to core helium burning, the
star develops a deep convective envelope. Within this outer
region, turbulent viscosity can dissipate tidally excited fluid
motion, sapping energy and angular momentum from the
orbit.

2.2.1 Order of Magnitude Calculation

A simple estimate of the tidal circularization time for a
nearly-circular binary is provided in, e.g. Zahn (1977); Phin-
ney (1992); and Verbunt & Phinney (1995). Adopting a typ-
ical value ⌫0 for the viscosity in the convective envelope, the

damping rate of a tidally forced oscillation is,

�est ⇠
Menv

M1

⇣
⌫0

H2

⌘
⇠ Menv

M1

✓
L

MenvR
2

1

◆
1/3

, (1)

where H is the pressure scale-height (and the length-scale
of the largest convective eddies), Menv is the mass of the
envelope, and L is the convective luminosity. We have used
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with M2 the mass of the companion, Mt = M1 + M2 and
semi-major axis a (see Phinney 1992).

With a given stellar profile, we can calculate the damp-
ing rate �f for a forced f-mode oscillation more precisely. The
response of M1 to the tidal potential of M2 is dominated by
the quadrupolar l = 2 terms (if the binary is su�ciently
separated). In general, the damping rate �f depends on the
tidal forcing frequency ! [see equation (19) of VL20]. When
the turnover time for the largest convective eddies is shorter
than the timescale for tidal forcing, the viscosity in the en-
velope is not reduced. In a red giant star, the eddy turnover
time in the convective envelope is typically short relative to
the tidal forcing period, and this condition is satisfied while
! ⌧ (GM1R

�3

1
)1/2 (see the top panel of Fig. 2 in VL20).

2.2.2 Weak Friction Approximation and Nearly Circular

Orbits

When the viscous damping rate in the envelope is indepen-
dent of the tidal forcing frequency, the tidal evolution equa-
tions can be framed in terms of the stellar tidal Love number
and lag time. If the tidal forcing period is much longer than
the dynamical time of the star, this treatment is equivalent
to the weak friction approximation. For an l = 2 f-mode os-
cillation in a slowly rotating body, the real part of the tidal
Love number is,
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where Qf is an overlap integral defined in equation (12) of
VL20, normalized such that G = M1 = R1 = 1, and !f ⌘
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is given by,
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with �f the damping rate of the l = 2 f-mode due to turbu-
lent viscosity [equation (19) of VL20].

Under the condition that the tidal forcing frequency
! ⌧ !f , we can express the circularization rate for a syn-
chronously rotating star in a nearly circular binary as, (Dar-
win 1880; Alexander 1973; Hut 1981)
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where ⌦ = (GMt/a
3)1/2 is the orbital frequency. By com-

paring equation (5) to equation (2), we find that the e↵ective
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Figure 1. The evolution of the stellar structure and the e↵ective tidal damping rate (from viscous dissipation in the convective envelope)
for a M1 = 10M� (left) and M1 = 15M� (right) MESA-generated stellar model.The top panels show the evolution of the radius. The
middle panels illustrate the convective regions in the stars. The bottom panels show the tidal damping rates for the stellar models
calculated with equation (6), together with equations (3) and (4) and compared with the estimate from equation (1).

Figure 2. The same as Fig. 1 but zoomed-in on the first episode of radius expansion. The vertical black lines mark the development of a
convective envelope with Menv > 0.1M1. The viscous dissipation rates shown in the bottom panels likely do not capture tidal dissipation
to the left of the black line before the development of the envelope.

the envelope to circularize the orbit. The black diamonds in
Fig. 5 mark the binary parameters and stellar rotation rate
when R1 = rRoche. At this point the semi-major axis and ec-
centricity are essentially unchanged, while the rotation rate
has slowed to conserve the spin angular momentum of the
star as the radius expands.

In the intermediate case where e0 = 0.8 and rp,0 =
70R1,0, the orbit circularizes significantly as the primary
climbs the giant branch. The orbit continues circularizing
when the primary ascends the asymptotic branch. In this
case, the binary is nearly circular when R1 = rRoche. The
rotation period of the primary is slightly longer than the pre-

MNRAS 000, 1–16 (2020)

dissipation rate estimate:



Tidal evolution and onset of mass transfer 

(Vick 2019, Vick, MM+ 2020)

More sophisticated modeling of the spectrum of dynamical oscillations 
excited and their dissipation on the convective field. 

4 M. Vick et al.

damping rate from tidal dissipation is,
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2.2.3 Theory of Tides and Dissipation in an eccentric

binary

VL20 developed a general formalism for the treatment of
tidal dissipation in the convective envelope of a star in an ec-
centric binary. For an eccentric orbit, the quadrupolar tidal
potential experienced by the primary star M1 from the com-
panion M2 can be decomposed into a sum over many forcing
frequencies. The tidal response of M1 is a weighted sum of
the response to each frequency term in the tidal potential.
Using this formalism, VL20 derived expressions for the tidal
torque and energy transfer rate (see their equations 43, 44,
51 and 52). We use their results in the orbital evolution equa-
tions presented in the following subsection (Section 2.3).

VL20 allowed for viscosity reduction when the tidal
forcing time is shorter than the turnover time for convective
eddies in the primary star. For a giant star, the tidal forc-
ing time is often longer than the eddy turnover time, and
viscosity reduction is negligible. Thus �f is a constant for
a given stellar model. In this case, VL20 also demonstrated
that their treatment yields equivalent orbital evolution equa-
tions to the weak friction approximation [equations (9)-(11)
of (Hut 1981)] in the limit that ! ⌧ !f . However, for highly
eccentric orbits with small pericentre distances rp, the tidal
forcing frequency ! can be comparable to !f . Under these
conditions, VL20 found that the torque and energy transfer
rate can be orders of magnitude larger than the weak friction
calculation suggests (see Fig. 5 of VL20).

2.3 Coupling the Stellar and Orbital Evolution

In order to couple the stellar evolution and orbital evolution,
we use the stellar oscillation code GYRE to calculate the
properties of the f-mode (e.g. �f , !̄f , and Qf). We then use
spline interpolation to obtain the stellar mass, radius, and
mode properties as a function of time.

The time evolution of a, e, and ⌦s is given by the fol-
lowing equations:
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I
, (8)

ė
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where I = ⌘M1R
2

1 is the moment of inertia of the primary,
and the time evolution of ⌘, M1, and R1 is taken from the
MESA stellar models. The tidal energy transfer and torque
can be combined to determine the tidal contributions to the

orbital evolution,
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where µ = M1M2/Mt is the reduced mass of the binary and,
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The dimensionless functions FE , FT , and Fecc are provided
in equations (51-53) of VL20. Again, we have used the fre-
quency independent �f as the f-mode viscous damping rate.
In the weak friction limit, FE , FT , and Fecc can be simplified
to equations (46-48) of VL20.

We assume isotropic wind mass loss, such that the wind-
driven secular time evolution of the semi-major axis is,
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and the eccentricity is unchanged. We define the circulariza-
tion time of the binary as,
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As the binary circularizes, the tidal torque will cause
the star to spin up to the pseudosynchronous rotation rate,
where the star experiences no net torque. In the weak friction
approximation, the pseudosynchronous rotation rate is given
by,

⌦ps =
f2

f5(1� e2)3/2
⌦, (16)

For a highly eccentric orbit, the true pseudosynchronous ro-
tation rate, where ⌦̇s is zero, can occur at slightly faster
rotation rates than given by equation (16) (VL20). In a cir-
cular orbit, f2 and f5 are 1, and the synchronous rotation
rate is the orbital frequency.

When the binary is su�ciently close, mass transfer will
become important, and equations (10) - (12) will no longer
capture the orbital evolution. The onset of mass transfer
occurs when the primary is Roche-lobe filling. A precise cal-
culation of the Roche radius depends on both the stellar
spin and orbital eccentricity (e.g. Sepinsky et al. 2007a). For
simplicity, we use a common approximation adapted from
Eggleton (1983),

rRoche = rp
0.49q2/3

0.6q2/3 + ln(1 + q1/3)
, (17)

where rp is the pericentre distance and q = M1/M2 is the
mass ratio. For a binary with a companion of mass M2 =
1.4M�, the primary fills its Roche-lobe when rp ⇡ 1.8R1 for
M1 = 10M� and when rp ⇡ 1.7R1 for M1 = 15M�.
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Figure 6. Left: Eccentricity at the Roche radius for a 10M� primary star with a 1.4 M� companion ( rp = 1.8R1). Right: The ratio of
the stellar rotation rate ⌦s to the weak friction pseudosynchronous rate ⌦ps (see equation 16). Both panels are shown in the parameter
space of the initial (main-sequence) pericentre distance and eccentricity. Systems above the solid black line are too wide to merge within
the lifetime of the primary star. Below the dashed white line, rp,0 is too small for the star to develop a convective envelope before
rp = rRoche.

Figure 7. Same as in Fig. 6 but for the 15M� stellar model.

The strength of the torque scales as (rc/R1)
9, where R1 is

the radius of the star. In the massive giant stars that we
are considering, rc/R1 ⇠ a few percent after the convective
envelope has fully developed. In consequence, the tidal dissi-
pation rate from damped internal gravity waves is negligible
compared to dissipation in the envelope.

Radiative damping can also lead to significant dissipa-
tion when gravity waves excited at the radiative-core bound-
ary are damped before they can travel to the centre of
the star. Ivanov et al. (2013) derived a criterion for deter-
mining when a star is in this ‘Moderately Large Damping’
regime. To evaluate whether this regime could apply to our
stellar models, we used the stellar oscillation code GYRE
(Townsend & Teitler 2013) to calculate the eigenfrequencies
!↵ and profiles of a few g-modes for each model. We then es-
timated the radiative damping rate �rad of the the modes via

equation (18) of Fuller & Lai (2012) (see also Burkart et al.
2012). We found that, for both the 10M� and 15M� stellar
models, �rad > !↵, even for higher-frequency g-modes that
approach the dynamical frequency of the star. This failure
of the quasi-adiabatic approximation (�rad ⌧ !↵) implies
that g-modes would not be excited in these evolved, massive
stars. In any case, because of the small size of the radiative
core, we expect these g-modes to have a negligible contribu-
tion to the net tidal dissipation in the star.

Our study did not include the e↵ect of orbital decay
due to hydrodynamical drag on the neutron star as it moves
through the stellar wind. In some cases, this orbital decay
could be comparable to the orbital expansion rate due to
wind-driven mass loss, given in equation (14). For a circular
orbit with Keplerian velocity vk, we estimate the drag force
as F ⇠ (⇡/2)⇢wR

2

BHv
2

k, where ⇢w = Ṁ1/(4⇡a
2) is the wind
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pation rate from damped internal gravity waves is negligible
compared to dissipation in the envelope.
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ary are damped before they can travel to the centre of
the star. Ivanov et al. (2013) derived a criterion for deter-
mining when a star is in this ‘Moderately Large Damping’
regime. To evaluate whether this regime could apply to our
stellar models, we used the stellar oscillation code GYRE
(Townsend & Teitler 2013) to calculate the eigenfrequencies
!↵ and profiles of a few g-modes for each model. We then es-
timated the radiative damping rate �rad of the the modes via

equation (18) of Fuller & Lai (2012) (see also Burkart et al.
2012). We found that, for both the 10M� and 15M� stellar
models, �rad > !↵, even for higher-frequency g-modes that
approach the dynamical frequency of the star. This failure
of the quasi-adiabatic approximation (�rad ⌧ !↵) implies
that g-modes would not be excited in these evolved, massive
stars. In any case, because of the small size of the radiative
core, we expect these g-modes to have a negligible contribu-
tion to the net tidal dissipation in the star.

Our study did not include the e↵ect of orbital decay
due to hydrodynamical drag on the neutron star as it moves
through the stellar wind. In some cases, this orbital decay
could be comparable to the orbital expansion rate due to
wind-driven mass loss, given in equation (14). For a circular
orbit with Keplerian velocity vk, we estimate the drag force
as F ⇠ (⇡/2)⇢wR
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Tidal evolution and onset of mass transfer 

(Vick 2019, Vick, MM+ 2020)

Tidal Dissipation in Massive Binary Star Systems 11

Figure 8. The cumulative distribution function of the binary eccentricities at the Roche radius for the 10M� stellar model (left) and
15M� stellar model (right) given a thermal initial eccentricity distribution. The light pink line is the eccentricity distribution of binaries
for which rRoche is smaller than the stellar radius at which the star develops a convective envelope (Menv > 0.1M1).

Figure 9. A histogram of the rotation rate as a fraction of the orbital frequency for systems with an eccentricity at the Roche radius of
eRoche < 0.01. The left and right panels show the rotation rate for the M1 = 10 M� and M1 = 15 M� stellar models respectively. The
top and bottom panels show results for an initial rotation period of 1 day and 10 days respectively.

MNRAS 000, 1–16 (2020)

starting with an initially-thermal eccentricity distribution:



Tidal evolution and onset of mass transfer 

Often eccentric & asynchronous in massive-star systems!

Dynamical tides w/large amplitudes!

(MacLeod+ 2019) Eccentric mass transfer


e.g. Glanz+ 2020



The lead-in to common envelope phases

Evolution to contact


From mass transfer to engulfment


Appearance pre-CE




Modeling approach

Studying interacting binaries in Athena++

• spherical coordinate system 
centered on the donor star (excise 
stellar core!) 

• gas in the domain interacts with two 
point masses, one at the coordinate 
origin, one orbiting 

• simulations are in the reference 
frame of the donor star, arbitrary 
frame rotation (add fictitious forces) 

• static mesh refinement 

• approximate (static) treatment of 
self-gravity 

M1
M2

(MacLeod, Ostriker, & Stone 2018a)



Modeling the onset of a stellar merger

a0 = aRoche

m1

gas

point masses

m2 = 0.3

M1 = 1

Simulated system:

(initially tidally-locked — star co-rotates with the orbit)

“donor” “accretor”



Outflows & Ejecta

(MacLeod, Ostriker, & Stone 2018b)



Modeling the onset of a stellar merger

merging system: slice through orbital plane

(MacLeod, Ostriker, & Stone 2018a)



Orbital evolution

orbital decay starts out 
gradual, then runs away

(MacLeod, Ostriker, & Stone 2018a)



Angular momentum exchange

merging system: slice through orbital plane

green: pulling forward

pink: dragging back

(MacLeod, Ostriker, & Stone 2018a)



Angular momentum exchange

most torque is localized 
near the accretor

on which stellar core is most of the net torque exerted?



Representation with point-mass evolution equations

of material lost from the binary. Section 6 discusses the
resultant orbital evolution and combines these measurements to
produce reconstructed orbital evolutions from analytic theory.
In Section 7, we discuss some implications of our findings for
observed systems like V1309 Sco, and Section 8 summarizes
our conclusions.

2. Analytic Framework

We start by reviewing the semianalytic framework for binary
orbital evolution and identify key, unknown parameters that
we will measure in our simulated systems (see the review of
Shu & Lubow 1981 for a more extended discussion).

2.1. Orbital Evolution

The coupling of orbital evolution to mass and angular
momentum exchange in a binary system can be expressed as an
ordinary differential equation in the limit where we treat the
binary components as point masses in circular orbit. Then,
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Here, Md is the mass of the donor star, Ma is the mass of the
accretor star, and � �M M Md a. The binary separation of the
circular orbit is a, and γloss is a dimensionless specific angular
momentum of material leaving the binary,
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the ratio of the specific angular momentum, lloss, of lost
material to the specific angular momentum of the binary,
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2 . Finally, β represents a fraction of

mass lost from the donor that is captured by the accretor,
C� �M Ma d� � . In what follows, we will consider the limit

C l 0 of the expression above—because this is the case that has
relevance for comparison to our hydrodynamic simulations—
such that
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This represents the case of fully nonconservative mass loss
from a binary system (Huang 1963).1

It is apparent that the rate of orbital evolution described by
Equation (3) is a direct result of the uncertain parameters of Md�
and Hloss. With knowledge of these parameters, one may
estimate the orbit evolution rate (for example, the number of
orbits remaining until a binary coalesces) as a function of
binary properties.

2.2. The Donor Mass-loss rate

The strongest influence on the mass-loss rate stems from the
binary separation; in binary systems where the donor star
overflows its Roche lobe more, the mass-loss rate should be
higher. However, many of the donor star’s properties
(including its structure and rotation) may also affect the
mass-loss rate. Measuring those effects is one of the goals of

this paper. To do so, we will use a baseline prediction from
Paczyński & Sienkiewicz (1972), who estimated the mass-loss
rate of a polytropic donor star of index n to be
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Here, Md and Rd are the mass and radius of the donor, RL is the
radius of the Roche lobe (Eggleton 1983), and τ is the binary
orbital period, n=1/(Γs−1), and Γs is the polytropic index
(the logarithmic derivative of gas pressure with respect to
density).
Some numerical confirmation of this approximation has

come through a study by Edwards & Pringle (1987), using two-
dimensional hydrodynamic simulations. MacLeod et al.
(2018a) applied this expression to one simulation of binary
coalescence and found that α≈1 reproduced the model
behavior quite well (their Figure 7).
Improvements on this model have been presented in the

literature with a focus on low mass-loss rates and the behavior
of material near the optical photosphere. For example, Jackson
et al. (2017) presented a detailed model that accounts for the
presence of atmospheric material above the optical photosphere
radius—which determines the degree of Roche lobe overflow
in Equation (4). Pavlovskii & Ivanova (2015) demonstrated the
importance of the thermodynamics of the outermost layers
involved in the mass-transferring flow, especially in giant-star
donors. Because the optical depth becomes very low near the
donor surface, Pavlovskii & Ivanova (2015) show that there is
always some material that can thermally adjust, and this
nonadiabatic behavior can impact the donor’s mass-loss rate as
a function of degree of Roche lobe overflow, and, in turn, the
stability of mass transfer. Nonadiabatic properties of the donor-
object’s outer layers may also be important in objects with hot,
irradiated surface layers, as in X-ray binaries or close-in planets
(Jackson et al. 2017). Despite these important effects, we focus
on the simple expression of Equation (4) for comparison to our
numerical simulations in Section 4 because we are only able to
study phases of very deep Roche lobe overflow compared to
most models of binary mass exchange and because the more
detailed thermodynamics of radiatively cooling flows are not
present in our hydrodynamic calculations.

2.3. The Value of γloss

A second key uncertainty that we will use our numerical
models to assess is the specific angular momentum of material
lost from the binary, parameterized by γloss. Although we do
not know a priori the value of this parameter in a given binary
system, several guiding values serve as useful benchmarks
(Huang 1963):

(i) The specific angular momentum of the donor star,
�l M M GMad a

2 2 , which implies H � M M ;d a d
(ii) The specific angular momentum of the accretor star,

�l M M GMaa d
2 2 , which implies H � M M ;a d a and

(iii) The specific angular momentum of the outer Lagrange
point near the secondary, L2, xl GMa1.2L

2
2 , which

implies H x M M M1.2L
2 2

d a2
( ) (Pribulla 1998).

For illustrative purposes, case (i) might occur if the donor were
losing material via a wind that is unaffected by the accretor.
Case (ii) might occur if the donor transferred material to the

1 Although similar expressions are widely used, a particularly pedagogical
introduction is given in O. Pols’ binary-evolution notes, Chapter 7, online
athttp://www.astro.ru.nl/~onnop/education/binaries_utrecht_notes/.
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of material lost from the binary. Section 6 discusses the
resultant orbital evolution and combines these measurements to
produce reconstructed orbital evolutions from analytic theory.
In Section 7, we discuss some implications of our findings for
observed systems like V1309 Sco, and Section 8 summarizes
our conclusions.

2. Analytic Framework

We start by reviewing the semianalytic framework for binary
orbital evolution and identify key, unknown parameters that
we will measure in our simulated systems (see the review of
Shu & Lubow 1981 for a more extended discussion).

2.1. Orbital Evolution

The coupling of orbital evolution to mass and angular
momentum exchange in a binary system can be expressed as an
ordinary differential equation in the limit where we treat the
binary components as point masses in circular orbit. Then,
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This represents the case of fully nonconservative mass loss
from a binary system (Huang 1963).1

It is apparent that the rate of orbital evolution described by
Equation (3) is a direct result of the uncertain parameters of Md�
and Hloss. With knowledge of these parameters, one may
estimate the orbit evolution rate (for example, the number of
orbits remaining until a binary coalesces) as a function of
binary properties.

2.2. The Donor Mass-loss rate

The strongest influence on the mass-loss rate stems from the
binary separation; in binary systems where the donor star
overflows its Roche lobe more, the mass-loss rate should be
higher. However, many of the donor star’s properties
(including its structure and rotation) may also affect the
mass-loss rate. Measuring those effects is one of the goals of

this paper. To do so, we will use a baseline prediction from
Paczyński & Sienkiewicz (1972), who estimated the mass-loss
rate of a polytropic donor star of index n to be
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Here, Md and Rd are the mass and radius of the donor, RL is the
radius of the Roche lobe (Eggleton 1983), and τ is the binary
orbital period, n=1/(Γs−1), and Γs is the polytropic index
(the logarithmic derivative of gas pressure with respect to
density).
Some numerical confirmation of this approximation has

come through a study by Edwards & Pringle (1987), using two-
dimensional hydrodynamic simulations. MacLeod et al.
(2018a) applied this expression to one simulation of binary
coalescence and found that α≈1 reproduced the model
behavior quite well (their Figure 7).
Improvements on this model have been presented in the

literature with a focus on low mass-loss rates and the behavior
of material near the optical photosphere. For example, Jackson
et al. (2017) presented a detailed model that accounts for the
presence of atmospheric material above the optical photosphere
radius—which determines the degree of Roche lobe overflow
in Equation (4). Pavlovskii & Ivanova (2015) demonstrated the
importance of the thermodynamics of the outermost layers
involved in the mass-transferring flow, especially in giant-star
donors. Because the optical depth becomes very low near the
donor surface, Pavlovskii & Ivanova (2015) show that there is
always some material that can thermally adjust, and this
nonadiabatic behavior can impact the donor’s mass-loss rate as
a function of degree of Roche lobe overflow, and, in turn, the
stability of mass transfer. Nonadiabatic properties of the donor-
object’s outer layers may also be important in objects with hot,
irradiated surface layers, as in X-ray binaries or close-in planets
(Jackson et al. 2017). Despite these important effects, we focus
on the simple expression of Equation (4) for comparison to our
numerical simulations in Section 4 because we are only able to
study phases of very deep Roche lobe overflow compared to
most models of binary mass exchange and because the more
detailed thermodynamics of radiatively cooling flows are not
present in our hydrodynamic calculations.

2.3. The Value of γloss

A second key uncertainty that we will use our numerical
models to assess is the specific angular momentum of material
lost from the binary, parameterized by γloss. Although we do
not know a priori the value of this parameter in a given binary
system, several guiding values serve as useful benchmarks
(Huang 1963):

(i) The specific angular momentum of the donor star,
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(ii) The specific angular momentum of the accretor star,
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For illustrative purposes, case (i) might occur if the donor were
losing material via a wind that is unaffected by the accretor.
Case (ii) might occur if the donor transferred material to the
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of material lost from the binary. Section 6 discusses the
resultant orbital evolution and combines these measurements to
produce reconstructed orbital evolutions from analytic theory.
In Section 7, we discuss some implications of our findings for
observed systems like V1309 Sco, and Section 8 summarizes
our conclusions.

2. Analytic Framework

We start by reviewing the semianalytic framework for binary
orbital evolution and identify key, unknown parameters that
we will measure in our simulated systems (see the review of
Shu & Lubow 1981 for a more extended discussion).

2.1. Orbital Evolution

The coupling of orbital evolution to mass and angular
momentum exchange in a binary system can be expressed as an
ordinary differential equation in the limit where we treat the
binary components as point masses in circular orbit. Then,
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Here, Md is the mass of the donor star, Ma is the mass of the
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This represents the case of fully nonconservative mass loss
from a binary system (Huang 1963).1

It is apparent that the rate of orbital evolution described by
Equation (3) is a direct result of the uncertain parameters of Md�
and Hloss. With knowledge of these parameters, one may
estimate the orbit evolution rate (for example, the number of
orbits remaining until a binary coalesces) as a function of
binary properties.

2.2. The Donor Mass-loss rate

The strongest influence on the mass-loss rate stems from the
binary separation; in binary systems where the donor star
overflows its Roche lobe more, the mass-loss rate should be
higher. However, many of the donor star’s properties
(including its structure and rotation) may also affect the
mass-loss rate. Measuring those effects is one of the goals of

this paper. To do so, we will use a baseline prediction from
Paczyński & Sienkiewicz (1972), who estimated the mass-loss
rate of a polytropic donor star of index n to be
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Here, Md and Rd are the mass and radius of the donor, RL is the
radius of the Roche lobe (Eggleton 1983), and τ is the binary
orbital period, n=1/(Γs−1), and Γs is the polytropic index
(the logarithmic derivative of gas pressure with respect to
density).
Some numerical confirmation of this approximation has

come through a study by Edwards & Pringle (1987), using two-
dimensional hydrodynamic simulations. MacLeod et al.
(2018a) applied this expression to one simulation of binary
coalescence and found that α≈1 reproduced the model
behavior quite well (their Figure 7).
Improvements on this model have been presented in the

literature with a focus on low mass-loss rates and the behavior
of material near the optical photosphere. For example, Jackson
et al. (2017) presented a detailed model that accounts for the
presence of atmospheric material above the optical photosphere
radius—which determines the degree of Roche lobe overflow
in Equation (4). Pavlovskii & Ivanova (2015) demonstrated the
importance of the thermodynamics of the outermost layers
involved in the mass-transferring flow, especially in giant-star
donors. Because the optical depth becomes very low near the
donor surface, Pavlovskii & Ivanova (2015) show that there is
always some material that can thermally adjust, and this
nonadiabatic behavior can impact the donor’s mass-loss rate as
a function of degree of Roche lobe overflow, and, in turn, the
stability of mass transfer. Nonadiabatic properties of the donor-
object’s outer layers may also be important in objects with hot,
irradiated surface layers, as in X-ray binaries or close-in planets
(Jackson et al. 2017). Despite these important effects, we focus
on the simple expression of Equation (4) for comparison to our
numerical simulations in Section 4 because we are only able to
study phases of very deep Roche lobe overflow compared to
most models of binary mass exchange and because the more
detailed thermodynamics of radiatively cooling flows are not
present in our hydrodynamic calculations.

2.3. The Value of γloss

A second key uncertainty that we will use our numerical
models to assess is the specific angular momentum of material
lost from the binary, parameterized by γloss. Although we do
not know a priori the value of this parameter in a given binary
system, several guiding values serve as useful benchmarks
(Huang 1963):

(i) The specific angular momentum of the donor star,
�l M M GMad a
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(ii) The specific angular momentum of the accretor star,
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For illustrative purposes, case (i) might occur if the donor were
losing material via a wind that is unaffected by the accretor.
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How (non)conservative is the mass exchange?

RLOF python package: https://github.com/morganemacleod/RLOF 

(MacLeod & Loeb 2020a,b)



Thermal evolution and onset of mass transfer 

The previous slide assumed a known mass-radius 
relation for the donor star. This is simple in the case 
of adiabatic mass loss, but is more complex when 
the donor star is (partially) thermally adjusting to 

mass transfer. 


 Critical, and subtle, implications for stability of MT


—> See … Pavlovskii+ 2015,2017, Marchant+ 2021

(Marchant+ 2021)



Thermal evolution and onset of mass transfer A&A 653, A134 (2021)

Fig. 8. HST progenitor photometry and nondetection limits from
Spitzer. The dust is composed of a = 0.1 µm silicate grains radiating
at a uniform temperature. The black line shows the contribution of the
optical SED. The dotted lines show the contribution of the dust emis-
sion at di↵erent temperatures and the solid coloured lines represent the
combined optical and infrared SED.

Fig. 9. Location of the AT 2018bwo progenitor in the HR diagram.
MESA single stellar evolution tracks are shown for stars between 9
and 13 M�. The main sequence is marked with a thicker line. Di↵er-
ent markers represent progenitor parameters using di↵erent models (see
Table 4). The insert shows a zoomed in region around the progenitor
location, along with a finer grid of models.

we assume convective core overshooting with the overshooting
length of 0.345 pressure scale heights, as guided by observa-
tions of B-type giants (⇠15 M�) in the LMC (Brott et al. 2011).
This is roughly two times larger than the overshooting adopted
in the MIST stellar tracks (Choi et al. 2016, calibrated to low-
mass stars), and leads to a somewhat higher luminosity-to-mass
ratio of our models.

For simplicity, when computing binary models we only
evolve the primary (donor) star and treat the companion as
a point mass. The primary is initially nonrotating and can
be spun-up by tidal interactions. We follow the formalism of
Kolb & Ritter (1990) to calculate the mass-transfer rate through

Fig. 10. Evolution of donor stars of di↵erent masses in the HR diagram,
derived from binary stellar evolution tracks computed with MESA.
Nonrotating single stellar tracks from Klencki et al. (2020) are plot-
ted with thin gray lines. The binary models assume a mass ratio of
q = Mdon/Macc = 5.0 (3.5 in the case of the Mdon = 16M� model),
and the initial orbital periods were chosen such that the mass-loosing
donors are consistent with the location of the AT 2018bwo progenitor
in the diagram, albeit for di↵erent mass transfer rates.

the L1 Lagrangian point. We assume that the companion is
unable to accrete any of the transferred mass. This assumption is
commonly made for systems evolving through a phase of rapid
case B mass transfer based on a spin-up argument (once the
accretor is quickly spun up, the accretion is expected to cease,
e.g., de Mink et al. 2013). We note, however, that recent indi-
rect evidence from Be X-ray binaries in the Small Magellanic
Cloud suggests a possibly higher accretion e�ciency of ⇠0.5
in such systems (Vinciguerra et al. 2020). We further assume
that specific angular momentum of the mass ejected from the
system is an average of the angular momenta of the accre-
tor and the L2 point, guided by the gas-kinematics study of
MacLeod & Loeb (2020a). This assumption is somewhat degen-
erate with the (unknown) mass ratio of the system: a fully
isotropic mode of mass ejection (i.e., specific angular momen-
tum of the accretor) would yield similar results to our models but
for steeper mass ratios. We explore initial donor masses between
12 and 18 M�, mass ratios between 3 and 10, and orbital periods
between 100 and 1000 days. The MESA inlists (input files) nec-
essary to reconstruct our work as well as all the binary models
are available online10.

In Fig. 10, we show several tracks of donor stars in the HR
diagram derived from binary models that were found consistent
with the location of the AT 2018bwo progenitor. In each case, as
soon as the mass transfer rate increases above & 10�3

M� yr�1,
the donor’s luminosity begins to decrease significantly. As a
result, donors with various initial masses (ranging from 12 to
16 M� in Fig. 10) can all be consistent with the locus of the
AT 2018bwo progenitor, albeit at di↵erent mass-transfer rates,
ranging from log(Ṁ/M� yr�1) ⇡ �2.4 for the 12 M� progenitor
to ⇡ �1.2 for the 15 M� progenitor. The ages of the progeni-
tors range from ⇡12 Myr for the 16 M� donor to ⇡18.5 Myr for
the 12 M� donor. The initial mass ratio was q = 5 for models
with Mdon = 12, 13, 14, and 15 M�, and q = 3.5 for the model
with Mdon = 16 M�. Models with Mdon = 17 or 18 M� were
found inconsistent with the progenitor. We note that models with

10 https://zenodo.org/communities/mesa
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Bulk flow partially advects 
the stellar luminosity

Radial mass loss

Advection is ~perpendicular 
to temperature gradient


—> Expect less advective 
degradation of stellar 

luminosity

Roche lobe overflow



The lead-in to common envelope phases

Evolution to contact


From mass transfer to engulfment


Appearance pre-CE




Mass loss in the lead-in to coalescence

(MacLeod,  
Ostriker, & Stone 2018b)

Thick torus of 
circumbinary material



Mass loss in the lead-in to coalescence
Comparison to polytropic, hydrostatic torus of 

constant specific angular momentum

Internal shocks: redistribute angular momentum, 
determine thermal evolution

(MacLeod & Loeb 2020b)



Mass loss in the lead-in to coalescence
Internal shocks: redistribute angular momentum, 

determine thermal evolution

⇢(R, 0) / r�3

T (R, 0) / r�1

approximate scalings: steeper than steady wind

proportional to grav. potential 

(MacLeod & Loeb 2020b)



Mass loss in the lead-in to coalescence

T . 103 K

dust condenses when

major increase in opacity

e↵ ⇠ Xdd

⇠ 5 cm2 g�1
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Mass loss in the lead-in to coalescence

Dust optical depth increases in 
the lead-in to merger!

Example merging system: 1 solar mass, 30 solar radii, q=1/3

(MacLeod, De, Loeb, 2022)



Dust Obscuration

(MacLeod, De, Loeb, 2022)



Dust Obscuration

(MacLeod, De, Loeb, 2022)



Dust Obscuration
CE ejection:

↵�Eorb ⇠ �Ebind

(MacLeod, De, Loeb, 2022)



Dust Obscuration

(MacLeod, De, Loeb, 2022)



Summary

Mass transfer and loss drives systems 
toward coalescence 

Circumbinary material shapes the observable 
appearance of transients

CE ejection outcomes should be associated 
with a population of IR transients

Thank you!      Morgan MacLeod: morgan.macleod@cfa.harvard.edu

Tides circularize low-mass systems before mass exchange; many 
massive systems remain eccentric and asynchronous



OGLE-2002-BLG360 — dusty, reddened coalescence transient?

2001 2002 2003 2004 2005 2006 2007 2008 2009

Fig. 1. Light curve of OGLE-2002-BLG-360 from the OGLE-III project: I Kron-Cousins magnitude versus time of observations in Julian Dates.
Time in years is marked on top of the figure.

in 2008 (Mason et al. 2010). As extragalactic eruptions
of a similar kind one can mention M31 RV (eruption in
1989, Mould et al. 1990), M85 OT2006 (Kulkarni et al. 2007),
NGC300 OT2008 (Bond et al. 2009; Berger et al. 2009), and
SN 2008S (Smith et al. 2009).

V1309 Sco appeared to be a clue object in understanding
the nature of red transients. An analysis of archive photomet-
ric measurements, available from the OGLE project, allowed
Tylenda et al. (2011a) to show that the progenitor of V1309 Sco
was a contact binary system quickly evolving to its merger.

This finding does not necessarily imply that all the above
mentioned objects are stellar mergers. Indeed, it has been

seggested that some of the extragalactic transients, espe-
cially those called ”supernova impostors”, are due to some
other phenomenon involving massive stars (Humphreys et al.
2011; Kochanek 2011; Smith et al. 2011) or massive binaries
(Kashi et al. 2010), although a stellar merger scenario cannot be
excluded either (Kashi & Soker 2013).

In the archives of the OGLE project we have found an ob-
ject, which suffered from a several years lasting eruption. Al-
ready a superficial analysis of the data indicates that it might
have been an overlooked red transient. The present paper reports
on a detailed analysis of the data on the object, both, from the
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Extended progenitor?  
Teff ~ 4300 K


Long duration ~ 1000 d


